ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:30.33KB ,
资源ID:6034187      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6034187.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(离散数学重点(2011离散数学A卷(郑州轻工业学院)).doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

离散数学重点(2011离散数学A卷(郑州轻工业学院)).doc

1、    离散数学重点 这个只是离散的重点,有些重点没介绍太多,去课本上找到,好好了解下,题目就是做老师给的那几套题就够了,通过做题对重点更加理解。有题不会的QQ问,不发答案了。按章节开始。 数理逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;  2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;  3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;  4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;  5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;

2、  6.真值表中值为1的项为极小项,值为0的项为极大项;  7.n个变元共有n2个极小项或极大项,这2n为(0~ 2n-1)刚好为化简完后的主析取加主合取;  8.永真式没有主合取范式,永假式没有主析取范式;  9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)  10.命题逻辑的推理演算方法:P规则,T规则   ①真值表法;②直接证法;③归谬法;④附加前提法; 11.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;   多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 12

3、既有存在又有全称量词时,先消存在量词,再消全称量词;    集合论 第六章 集合 1.N,表示自然数集,1,2,3„„,不包括0;  2.基:集合A中不同元素的个数,|A|;  3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);  4.若集合A有n个元素,幂集P(A)有2n个元素,|P(A)|= = 2n;  5.集合的划分:(等价关系)     ①每一个分划都是由集合A的几个子集构成的集合;    ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较:     分划:每个元素均应出现且仅出现一次在子集中;    覆盖:只要求每个元素都出现,

4、没有要求只出现一次;     第七章   二元关系  1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为mn,A到B上可以定义种不同的关系;  2.若集合A有n个元素,则|A×A|=,A上有个不同的关系;  3.全关系的性质:自反性,对称性,传递性;    空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性;  4.前域(domR):所有元素x组成的集合;   后域(ranR):所有元素y组成的集合;  5. 自反闭包:r(R)=RUIA; 对称闭包:s(R)=RUR-1; 传递闭包: 6.等价关系:

5、集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;  7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;  8.covA={|x,y属于A,y盖住x};  9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);   极大元:集合A中没有比它更大的元素(若存在可能不唯一);   最小元:比集合A中任何其他元素都小(若存在就一定唯一);   最大元:比集合A中任何其他元素都大(若存在就一定唯一); 10.前提:B是A的子集     上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一); 

6、   下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);     上确界:最小的上界(若存在就一定唯一);    下确界:最大的下界(若存在就一定唯一); 第八章   函数  1.若|X|=m,|Y|=n,则从X到Y有mn 2种不同的关系,有m n种不同的函数; 2.在一个有n个元素的集合上,可以有2 2n种不同的关系,有nn种不同的函数,有n!种不同的双射;  3.若|X|=m,|Y|=n,且m<=n,则从X到Y有Am n种不同的单射; 4.单射:f:X-Y,对任意1x,2x属于X,且1x≠2x,若f(1x)≠f(2x);   满射:

7、f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;    双射:f:X-Y,若f既是单射又是满射,则f是双射;  5.复合函数:fºg=g(f(x));  6.设函数f:A-B,g:B-C,那么  (1).如果f,g都是单射,则fºg也是单射;   (2.)如果f,g都是满射,则fºg也是满射; (3.)如果f,g都是双射,则fºg也是双射; (4.)如果fºg是双射,则f是单射,g是满射;     代数结构 第九章   代数系统  1.二元运算:集合A上的二元运算就是到A的映射;  2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从

8、A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的 个数为16种;  3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等;  ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同;  4.同态映射:,,满足f(a*b)=f(a)^f(b),则f为由的同态映射;若f是双射,则称为同构;    第十章   群  1.广群的性质:封闭性;    半群的性质:封闭性,结合律; 

9、   含幺半群(独异点):封闭性,结合律,有幺元;   群的性质:封闭性,结合律,有幺元,有逆元;  2.群没有零元;  3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;  4.循环群中幺元不能是生成元;  5.任何一个循环群必定是阿贝尔群; 第十一章    格与布尔代数  1.格:偏序集合A中任意两个元素都有上、下确界; 2.格的基本性质:   1)  自反性         a≤a   对偶: a≥a   2)  反对称性          a≤b ^ b≥a  => a=b         对偶:a≥b ^ b≤a  => a=b   3)

10、  传递性          a≤b ^ b≤c  =>  a≤c         对偶:a≥b ^ b≥c  =>  a≥c    4) 最大下界描述之一          a^b≤a   对偶 avb≥a         A^b≤b   对偶 avb≥b   5)最大下界描述之二          c≤a,c≤b  =>  c≤a^b          对偶c≥a,c≥b  =>Þc≥avb      6)  结合律        a^(b^c)=(a^b)^c        对偶 av(bvc)=(avb)vc      7)   等幂律        a^a=a  

11、 对偶  ava=a  8)  吸收律        a^(avb)=a  对偶  av(a^b)=a    9)    a≤b <=>  a^b=a    avb=b   10)  a≤c,b≤d  =>  a^b≤c^d   avb≤cvd   11)  保序性   b≤c  =>  a^b≤a^c  avb≤avc   12) 分配不等式        av(b^c)≤(avb)^(avc)   对偶  a^(bvc)≥(a^b)v(a^c)   13)模不等式     a≤c  <=>Þ  av(b^c)≤(avb)^c  3.分配格:满足a^(bvc)=(a^

12、b)v(a^c)和av(b^c)=(avb)^(avc);  4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;  5.链格一定是分配格,分配格必定是模格;  6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格的全上界,记为1;(若存在则唯一)    全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格的全下界,记为0;(若存在则唯一)  7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;  8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;  9.有补格:在有界格内,每个元素都至少有

13、一个补元;  10.有补分配格(布尔格):既是有补格,又是分配格; 11.布尔代数:一个有补分配格称为布尔代数; 图论 1.邻接:两点之间有边连接,则点与点邻接;  2.关联:两点之间有边连接,则这两点与边关联;  3.平凡图:只有一个孤立点构成的图;  4.简单图:不含平行边和环的图;  5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;    有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;  6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;  7.r-正则图:每个节点度数均为r的图;  8.握手定理:节点度数的总和等于

14、边的两倍;  9.任何图中,度数为奇数的节点个数必定是偶数个;  10.任何有向图中,所有节点入度之和等于所有节点的出度之和;  11.每个节点的度数至少为2的图必定包含一条回路;  12.可达:对于图中的两个节点iv,jv,若存在连接iv到jv的路,则称iv与jv相互可达,也称iv与jv是连通的;在有向图中,若存在iv到jv的路,则称iv到jv可达;  13.强连通:有向图章任意两节点相互可达;    单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通)  14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连

15、通的,则这些点组成的集合称为点割集;    割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;  15.关联矩阵:M(G),ijm是iv与je关联的次数,节点为行,边为列;    无向图:点与边无关系关联数为0,有关系为1,有环为2;    有向图:点与边无关系关联数为0,有关系起点为1终点为-1,    关联矩阵的特点: 无向图:      ①行:每个节点关联的边,即节点的度;     ②列:每条边关联的节点; 有向图:    ③所有的入度(1)=所有的出度(0);  16.邻接矩阵:A(G),ija是iv邻接到jv的边的数目,点为行,点为列; 17

16、可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;     P(G)=A(G)+2A(G)+3A(G)+4A(G)     可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;  A(G)中所有数的和:表示图中路径长度为1的通路条数;    2A(G)中所有数的和:表示图中路径长度为2的通路条数;    3A(G)中所有数的和:表示图中路径长度为3的通路条数; A(G)中所有数的和:表示图中路径长度为4的通路条数;  P(G)中主对角线所有数的和:表示图中的回路条数;  18.布尔矩阵:B(G),iv到jv有路为1,无路则为0,点为行,

17、点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;  20.生成树:只访问每个节点一次,经过的节点和边构成的子图;  21.构造生成树的两种方法:深度优先;广度优先;    深度优先:               ①选定起始点0v;               ②选择一个与0v邻接且未被访问过的节点1v;               ③从1v出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;  广度优先:            ①选定起始点0

18、v;            ②访问与0v邻接的所有节点1v,2v,„„,kv,这些作为第一层节点;            ③在第一层节点中选定一个节点1v为起点;                ④重复②③,直到所有节点都被访问过一次;  22.最小生成树:具有最小权值(T)的生成树;  23.构造最小生成树的三种方法:        克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法       ①将所有权值按从小到大排列;       ②先画权值最小的边,然后去掉其边值;重新按小到大排序;       ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不

19、能出现回路,然后去掉其边值;重新按小到大排序;       ④重复③,直到所有节点都被访问过一次;     (2)管梅谷算法(破圈法)       ①在图中取一回路,去掉回路中最大权值的边得一子图;       ②在子图中再取一回路,去掉回路中最大权值的边再得一子图;       ③重复②,直到所有节点都被访问过一次;     (3)普利姆算法   ①在图中任取一点为起点1v,连接边值最小的邻接点2v;   ②以邻接点2v为起点,找到2v邻接的最小边值,如果最小边值比1v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,连接1v现在的最小边值(除已连接的边值); 

20、  ③重复操作,直到所有节点都被访问过一次; 24.欧拉路:经过图中每条边一次且仅一次的通路;    欧拉回路:经过图中每条边一次且仅一次的回路;    欧拉图:具有欧拉回路的图;     单向欧拉路:经过有向图中每条边一次且仅一次的单向路;    欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;  25.(1)无向图中存在欧拉路的充要条件:      ①连通图; ②有0个或2个奇数度节点;     (2)无向图中存在欧拉回路的充要条件:      ①连通图;②所有节点度数均为偶数;    (3) 连通有向图含有单向欧拉路的充要条件:  ① 两个节点外,每个节点入度=

21、出度;  ②这两个节点中,一个节点的入度比出度多1,另一个节点的入 度比出度少1;  (4)连通有向图含有单向欧拉回路的充要条件:   图中每个节点的出度=入度;  26.哈密顿路:经过图中每个节点一次且仅一次的通路;     哈密顿回路:经过图中每个节点一次且仅一次的回路;     哈密顿图:具有哈密顿回路的图;  27.判定哈密顿图(没有充要条件)    必要条件:    任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;    充分条件:    图中每一对节点的度数之和都大于等于图中的总节点数;  28.哈密顿图的应用:安排圆桌会议;     方法:将每

22、一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;  29.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;  30.面次:面的边界回路长度称为该面的次;  31.一个有限平面图,面的次数之和等于其边数的两倍;  32.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则    v-e+r=2;  33.判断是平面图的必要条件:(若不满足,就一定不是平面图)   设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6; 34.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入

23、和除去2度节点可以变成同构的图,则称G1,G2是同胚的;  35.判断G是平面图的充要条件:          图G不含同胚于K3.3或K5的子图;  36.二部图:①无向图的节点集合可以划分为两个子集V1,V2;            ②图中每条边的一个端点在V1,另一个则在V2中;    完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;    判定无向图G为二部图的充要条件:            图中每条回路经过边的条数均为偶数;  37.树:具有n个顶点n-1条边的无回路连通无向图;  38.节点的层数:从树根到该节点经过的边的条数;  39.树高:层数最大的顶

24、点的层数;  40.二叉树:      ①二叉树额基本结构状态有5种;      ②二叉树内节点的度数只考虑出度,不考虑入度;      ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;     ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;     ⑤二叉树内节点的总数=边的总数+1;      ⑥位于二叉树第k层上的节点,最多有12-k个(k>=1);      ⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);     ⑧如果有0n个叶子,2n个2度节点,则0n=2n+1; 41.二叉树的节点

25、遍历方法:           先根顺序(DLR);          中根顺序(LDR);          后根顺序(LRD);   42.哈夫曼树:用哈夫曼算法构造的最优二叉树;  43.最优二叉树的构造方法:          ①将给定的权值按从小到大排序;         ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;        ③重复②,直达所有权值构造完毕;  44.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;    每个节点的编码:从根到该节点经过的0和1组成的一排编码;

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服