ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:21.50KB ,
资源ID:6027481      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6027481.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(全国高中联赛二试 苏教版.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国高中联赛二试 苏教版.doc

1、2007年全国高中数学联合竞赛加试试卷 (考试时间:上午10:00—12:00) 一、(本题满分50分) 如图,在锐角△ABC中,AB

2、取出多少个棋子才可能满足要求?并说明理由。 三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。 2007年全国高中数学联合竞赛加试试题参考答案 一、(本题满分50分)如图,在锐角△ABC中,AB

3、F、FO1。因为PD⊥BC,PF⊥AB,故B、D、P、F四点共圆,且BP为该圆的直径。又因为O1是△BDF的外心,故O1在BP上且是BP的中点。同理可证C、D、P、E四点共圆,且O2是的CP中点。综合以上知O1O2∥BC,所以∠PO2O1=∠PCB。因为AF·AB=AP·AD=AE·AC,所以B、C、E、F四点共圆。 充分性:设P是△ABC的垂心,由于PE⊥AC,PF⊥AB,所以B、O1、P、E四点共线,C、O2、P、F四点共线,∠FO2O1=∠FCB=∠FEB=∠FEO1,故O1、O2、E、F四点共圆。 必要性:设O1、O2、E、F四点共圆,故∠O1O2E+∠EFO1=180°。 由于

4、∠PO2O1=∠PCB=∠ACB−∠ACP,又因为O2是直角△CEP的斜边中点,也就是△CEP的外心,所以∠PO2E=2∠ACP。因为O1是直角△BFP的斜边中点,也就是△BFP的外心,从而∠PFO1=90°−∠BFO1=90°−∠ABP。因为B、C、E、F四点共圆,所以∠AFE=∠ACB,∠PFE=90°−∠ACB。于是,由∠O1O2E+∠EFO1=180°得 (∠ACB−∠ACP)+2∠ACP+(90°−∠ABP)+(90°−∠ACB)=180°,即∠ABP=∠ACP。又因为AB

5、'、PB'。由对称性,有∠AB'P=∠ABP,从而∠AB'P=∠ACP,所以A、P、B'、C四点共圆。由此可知∠PB'B=∠CAP=90°−∠ACB。因为∠PBC=∠PB'B, 故∠PBC+∠ACB=(90°−∠ACB)+∠ACB=90°,故直线BP和AC垂直。由题设P在边BC的高上,所以P是△ABC的垂心。 二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理

6、由。 解:最少要取出11个棋子,才可能满足要求。其原因如下: 如果一个方格在第i行第j列,则记这个方格为(i,j)。 第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连。用反证法。假设可取出10个棋子,使余下的棋子没有一个五子连珠。如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。这样,10个被取出的棋子不会分布在右下角的阴影部分。同理,由对称性,也不会分布在其他角上的阴影部分。第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格。同理(6,4)、(6,5)

7、7,4)、(7,5)这些方格上至少要取出2个棋子。在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子。这样,在这些区域内至少已取出了10个棋子。因此,在中心阴影区域内不能取出棋子。由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了。矛盾。 图1 图2 第二步构造一种取法,共取走11个棋子,余下的棋

8、子没有五子连珠。如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠。 综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠。 三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记 f(m,k)=,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。 证明:定义集合A={|m∈N*,k∈P},其中N*为正整数集。由于对任意k、i∈P且k≠i,是无理数,则对任意的k1、k2∈P和正整数m1、m2,当且仅当m1=m2,k1=k2。由于A是一个无穷集,现将A中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n,设此数列中第n项为。下面确定n与m、k的关系。若,则。由m1是正整数可知,对i=1,2,3,4,5,满足这个条件的m1的个数为。从而n==f(m,k)。因此对任意n∈N*,存在m∈N*,k∈P,使得f(m,k)=n。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服