ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:66.01KB ,
资源ID:6017537      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6017537.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(求曲线的方程.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

求曲线的方程.doc

1、 尊敬的各位领导、各位老师: 大家好! 我今天说课的课题是《求曲线的方程》。下面我说一说我是如何设计这一节课的。  一、教材的地位与作用 1.     本节教材的地位和作用    "求曲线的方程"是人教版高中《数学》第二册(必修本)的第七章"直线和圆的方程"的重点内容之一,也是难点之一。它把高中数学中的解析几何和代数紧紧连在一起,容纳了高中数学教学中很多的数学思想,如函数与方程思想,数形结合思想,等价转换思想及运动变换思想,这正是高考中重点所要考察的数学思想。另外,本节内容为以后的圆锥曲线内容作了理论和方法上的准备,是解析几何中承上启下的关键章节。  2.教材处理    1)学

2、生情况分析:学生在函数及其图像部分已经学习了平面解析几何的第一个概念—点的坐标,但对什么是解析几何还很模糊。因此,本节课的教学我插入解析几何发展的历史,以小故事的形式简单讲述迪卡尔和费马是怎样创立的解析几何,从而可以提高他们学习本节内容的兴趣,适当的调解一下部分同学在接受新知识时,担心学不好的情绪。用数学家的故事去激励他们不断地去开拓,去创新,去探索数学王国里的神奇。 2)教材分析:结合中学生的认知结构特点和本校学生的实际情况。我将本节内容分为两课时:   第一课时主要学习求曲线方程的一般步骤,并能根据所给条件,建立适当坐标系,求出曲线的方程。 第二课时主要学习求曲线方程常用的几种方法:

3、如直接法,代定系数法,相关点法及参数法       3.教学目标的确定 (1)       知识目标:能叙述求曲线方程的一般步骤,并能根据所给条件选择适当的坐标系,求出曲线的方程。 (2)       能力目标:在问题解决过程中,培养学生发散思维和转化,归纳数形结合等数学思想方法,提高分析问题,解决问题的能力。 (3)       情感目标:在问题解决过程中,培养学生积极探索和团结协作的科学精神。在民主,和谐的教学气氛中,充分的促进师生间的情感交流,形成学习数学的积极态度。激发学生热爱数学,学好数学的信心,形成锲而不舍的钻研精神。  4.教学重点、难点 重点:求曲线方程的基本方法和

4、步骤。 难点:由已知条件求曲线方程。教学难点中,面临着三个问题: (1)       如何建立适当的坐标系? (2)       如何从形成曲线的几何条件中寻找等量关系? (3)       如何将几何等量关系转化为曲线的方程。 二、教学方法和手段 (1)     教学方法:数学教学的核心是学生的“再创造”。教师不能将既有的知识灌输给学生,而应通过精心设置的一个个问题链,激发学生的求知欲,最终在教师的指导下发现问题,解决问题,为充分调动学生的积极性,使学生变被动学习为主动学习。因此,本节课我采取启发式的教学方法。 在教学中,我积极的鼓励学生的行为参与和思维参与,给学生独立的思考空

5、间,让学生经历知识形成的全过程,鼓励学生自主探索,发现解决问题的途径。在教学中,我还适当的对他们的数学学习过程进行评价,适当的评价他们的学习态度,在回答和思考中表现出来的自信,合作交流的意识,更进一步的激发了学生学习数学的兴趣,让他们体验成功的喜悦。在教学中,适时地给予表扬和鼓励,对正确的结论给予肯定,错误的结论给予引导。这样,整节课的教学气氛始终保持在和谐,轻松的环境中,学生的主体作用充分的表现出来。 (2)教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣, 电脑软件的交互性,可以很好地体现教师在教学过程中的思路和策略。对于教学中遇到的一些复杂的轨迹问题,几何

6、画板更以形象直观的形式给学生已充分的理解和掌握。 三、学法指导 改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程。为学生形成积极主动的,多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。 为了实现这一目标,本节教学让学生主体参与,主题参与,让学生动手,动脑。通过观察,联想,猜测,归纳等合情推理,鼓励学生多向思维,积极

7、活动,勇于探索。在学生的活动中,教师谨慎驾驭,肯定学生的正确,指出学生的错误,引导学生,揭示内涵,不断培养和训练学生的逻辑思维能力。 四、教学程序 。 教学 环节       教学过程             设计意图 导 入 新 课   引例:在南沙群岛中,甲岛与已岛相距8海里,一艘军舰在海上巡逻,巡逻过程中,从军舰上看甲乙两岛,保持视角为直角,你能否为军舰巡逻的路线写一个方程?  首先通过学生讨论,猜测军舰巡逻的路线,在用电脑演示军舰巡逻的动画效果,使学生知道路线应该是一个圆,同时也使学生想到了初中学过的点的轨迹这个概念,并适时地让他们再举几

8、个生活中有关点的轨迹的例子。 新 1了解知识阶段: (1)简介什么是解析几何?并以小故事的形式简单讲述迪卡尔和费马是怎样创立的解析几何及其发展史? (2)复习思考: ①“曲线的方程”和“方程的曲线”的定义是什么?②利用上述两个概念,解析几何中 学生刚开始接触解析几何,感到很陌生,以小故事的形式让他们了解解析几何这门学科,可以提高他们学习本节内容的兴趣,适当的调解一下部分同学在接受新知识时,担心学不好的情绪。用数学家的故事去激励他们不断地去开拓,去创新,去探索数学王国里的神奇。 课

9、 讲 解 借助怎样的方法来研究几何图形?③平面解析几何研究的主要问题是什么?   2、深化知识阶段 例1、设a,b两点的坐标是(-1,-1)(3,7),求线段ab的垂直平分线的方程? (1)利用所学知识求直线方程。 思考:①如果把这条垂直平分线看成是动点运动的轨迹,那么这条垂直平分线上任意一点应该满足怎样的几何条件?②几何条件能否转化为代数方程?用什么方法进行转化?③用新方法求得的直线方程,是否已符合要求?为什么?(提示

10、方程与曲线构成对应关系,必须满足什么条件?) 例2、已知点c到直线l的距离为4,若动点p到点c和直线l的距离相等,求动点p的轨迹. 思考(1)与例1相比,有什么显著的不同点?(2)你准备如何建立坐标系,为什么?(3)比较所求的轨迹方程有什么区别?从中得到什么体会?  学生在此之前已经学过直线的方程,因此例1会很容易的求出。然后引导学生从点的轨迹角度考虑此题的解题思路。鼓励学生多向思维。 解题反思:引导学生归纳一下求曲线方程的一般步骤: (1)       设点---用(x,y)表示曲线上任一点m的坐标: (2)       寻找条件----写出适合条件p的点m的集合p

11、 (3)       列出方程----用坐标表示条件p(m),列出方程f(x,y)=0 (4)       化简---化方程f(x,y)=0为最简形式 (5)       证明----证明以化简后的方程的解为坐标的点都是曲线上的点 在独立思考,相互交流讨论的基础上,教师适时点拨,学生自主解决. 解题反思(1)没有确定的坐标系时,要求方程首先必须建立坐标系.(2)坐标系选取适当,可以使运算简单,所得的方程也比较简单.(3)同一条曲线,在不同的坐标系中会有不同的方程. 根据例2,学生对求曲线方程的步骤完善为:第一步应改为建系设点,建立适当的直角坐标系. 如何建立适当的坐标系是

12、一个难点,教师在例2学生建立坐标系的基础上,教师总结建立坐标系的原则: 一是建立的坐标系有利于求出题目的结果;二是尽可能多的使图形上的点(或已知点),落在坐标轴上;三是充分利用图形本身的对称性.若曲线是轴对称图形,则可以选它的对称轴为坐标轴,也可以选取曲线上的特殊点为坐标原点. 在例1,例2的基础上,在看引例: 思考(1)如何把实际问题转化为数学问题?(2)你觉得应如何建立直角坐标系?(3)从军舰看甲,已两岛,保持视角为直角可转化为那些几何条件?(4)所求方程与军舰巡逻路线是否对应? 解题反思(1)在同一坐标系中,用不同的几何等量关系求得的曲线方程式相同的. (2)寻找合适的几何

13、等量关系,可以简化运算.(3)解题过程中应考虑实际意义. 3、巩固知识阶段: 课堂练习:过点p(2,4)做两条互相垂直的直线,若交x轴于a点,交y轴于b点,求线段ab的中点m的轨迹方程. 鼓励学生多角度的去思考问题,解决问题,,寻找不同的等量关系求曲线的方程 求轨迹方程的问题,要根据条件结合图形认真分析,联想相关的平面几何的指示,合理选择动点所满足的几何条件. 小 结 引导学生小结:   1.知识方面: 2. 能力方面: 3. 由本节课的学习得到的体会和引起的想法. 学生的体会是多方位的,多角度的,因此小结内容也是很灵活。主要

14、是学生在本节课在知识技能等方面形成过程中,用到的技能和数学思想方法进行小结,从而学生对本节有一个整体的把握。 作 业  4,5,6,7. 进一步深化学生对本节内容的理解. 五、板书设计                       §7.6.2  求曲线的方程 例1……     求曲线方程的       例2……           课堂练习 ┋            一般步骤          ┋                 ①…… ①……                                ②…… ┋ ⑤…… ③…… ④…… ⑤……

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服