ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:125.50KB ,
资源ID:6017413      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6017413.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(第六讲_数列的概念.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第六讲_数列的概念.doc

1、第六讲 数列的概念 1.数列的概念; 按一定顺序排列的一列数叫做数列,数列中的每一个数叫做数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第项,通常也叫做首项,排在第二位的数称为这个数列的第项,…,排在第位的数称为这个数列的第项. 注: 从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么他们就不是同一数列,显然数列和数集有本质的区别. 2.数列的记法 数列的一般形式可以写成:,可简记为.其中是数列的第项. 3.数列的通项公式 如果数列的第项与序号之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公

2、式. 注: (1)一个数列的通项公式有时不唯一. 如, 它的通项公式可以是,也可以是. (2)通项公式的作用:①求数列中的任意一项;②检验某数是不是该数列中的项,并确定是第几项. 4.数列的本质 从函数的观点看,数列可以看作一个定义域是正整数集(或它的子集)的函数.当自变量从小到大依次取值时对应的一列函数值.而数列的项是函数值,序号就是自变量,数列的通项公式就是相应函数的解析式.其图象是一群孤立点.由于函数有三种表示法,所以数列也有三种表示法:列表法、图象法和通项公式法.通常用通项公式法表示数列. 5.数列的分类 (1)按数列的项数是否有限,分为

3、有穷数列和无穷数列. 项数有限的数列叫做有穷数列;项数无限的数列叫做无穷数列. (2)按数列的每一项随序号的变化趋势,分为递增数列、递减数列、常数列和摆动数列. 一个数列从第项起,每一项都大于它的前一项的数列叫做递增数列; 一个数列从第项起,每一项都小于它的前一项的数列叫做递减数列; 各项相等的数列叫做常数列; 一个数列从第项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列. 6.递推公式 已知数列的第一项(或前几项),且任一项与它前一项(或前几项)间的关系可以用一个公式来表示,这个公式叫做数列的递推公式

4、 注:已知数列的递推公式时,采用逐次代值法,可以求出数列的其它项值. 类型之一:由数列的前几项写出数列的通项公式. 相关链接:观察、分析项的特点,归纳出项与项数的关系、规律. 例1.根据下列各数列的前几项的值,写出数列的一个通项公式: (1)1,,,,,…;(2),,,,,,…; (3)7,77,777,7777,…;(4)1,3,7,15,31,… 类型之二:数列最大项、最小项问题. 相关链接:(1)比较法;(2)利用函数的单调性(3)若an最大,则满足 例2.已知.试问:数列中有没有最大项?如果有,求出这个最大项;如果没有,说明理由. 类型之三:

5、利用Sn与an的关系求通项. 相关链接:an= 例3. 已知数列的前n项和Sn= ,求数列的通项公式an. 类型之四:由递推数列求通项公式. 由递推公式求通项公式的常用方法:叠加法,叠乘法,周期法,归纳猜想法,迭代法,取倒数法,取对数法,构造法等 (1) 叠加法:形如an+1-an=f(n)且f(n)的前n项和易求,常用当____________________ 当 例1.数列{an}中,a1=2,an+1=an+. 求通项an 叠乘法:形如=f(n)(常数或等比qn,或等) 且f(n)的前n项积易求:常用当____________________

6、当 例2.设数列{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0,求通项an (3)周期法:若数列满足则非零常数T是数列的周期。 例3.在数列中,an+1=an+ (n,且,则 (4)归纳猜想法:一般用于填空和选择

7、题 例4.已知数列{an}中,a1=2,an=(n,则a20=_________. 1.已知数列{an}满足a0=1,an=a0+a1+a2+…+an-1(n≥1),则当n≥1时an等于_______ 2.已知数列{an}满足a1=1,,则a20=_________. 3.已知数列{an}满足a1=1,an+1=an+2,则a2003=__________. 4. 已知.则数列中最大项为_______ , 最小项为_______ 5. 已知数列的前n项和Sn ,满足求数列的通项公式an. 6. 已知数列{an}满足a1=1,a1a2…an-1 an= (n≥2),则an等于_______ 3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服