ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:1.49MB ,
资源ID:599564      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/599564.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(优化炭表面氧官能团增强锌离子电容器的电容性能(英文)_袁平.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

优化炭表面氧官能团增强锌离子电容器的电容性能(英文)_袁平.pdf

1、Cite this:NewCarbonMaterials,2023,38(3):522-533DOI:10.1016/S1872-5805(23)60733-4Optimizing oxygen substituents of a carbon cathode for improvedcapacitive behavior in ethanol-based zinc-ion capacitorsYUANPing1,XIAOHao-ming2,LIJun-yi2,LUOJun-hui2,LUOXian-you1,CHENDa-ming1,*,LIDe1,*,CHENYong1,2,*(1.Sta

2、te Key Laboratory of Marine Resource Utilization in South China Sea,Hainan Provincial Key Laboratory of Research on Utilization ofSi-Zr-Ti Resources,Hainan University,Haikou 570228,China;2.Guangdong Key Laboratory for Hydrogen Energy Technologies,School of Materials Science and Hydrogen Energy,Fosha

3、n University,Foshan 528000,China)Abstract:Zincioncapacitors(ZICs)havebeenwidelystudiedinrecentyearsduetotheirhighenergydensity,excellentratecap-ability,longcyclinglifeandlowcost.Theincorporationofoxygenfunctionalgroups(OFGs)onthesurfaceofthecarbon-basedcathodesisaneffectivestrategyforimprovingthecap

4、acitiveperformanceofaqueousZICs.However,whethertheirpresencehelpsimprovethecapacitanceofethanol(EtOH)-basedZICshasnotbeeninvestigated.Inthiswork,acombinationofnitricacidoxidationandthermaltreatmentwasusedtoregulatetheOFGsontheactivatedsurfaceofthecarboncathode.Theoptimizedsamplehadahighspecificcapac

5、itanceof195Fg1at1Ag1usingZnCl2/EtOHastheelectrolyte,i.e.,a56%increasecomparedtoanunmodi-fiedcathode(125Fg1).ZICsalsoshownexcellentstabilityformorethan16000cyclesat3Ag1,whilemaintaining100%cou-lombicefficiency.ThissignificantlyimprovedperformanceisattributedtothepresenceofOFGs,especiallycarboxylandes

6、tergroups,whichprovideabundantelectrochemicalactivesitesforredoxreactionwiththezincions.Thisstudyreportsasignificantim-provementinthespecificcapacitanceofcarboncathodesforcommercialEtOH-basedZICsystems.Key words:Zinc-ioncapacitors;Oxygenfunctionalgroups;Ethanol;Activatedcarbon;Specificcapacitance1In

7、troductionElectrochemicalenergystorageinsupercapacit-ors,suchaselectricdouble-layercapacitors(EDLCs),can provide high power density with long cyclinglife12.Theenergystoragemechanismisbasedonionadsorption/desorption at the electric double layer ofelectrodematerials,suchasactivatedcarbon(AC)34.However

8、,theirlowenergydensitylimitslarge-scalepracticalapplications5.Strategiestoimprovetheen-ergydensityofEDLCsincludeincreasingtheaccess-iblespecificsurfaceareabyoptimizingtheporestruc-tureandimprovingtheelectricalconductivityofACtoaccelerateion/electrontransport69.Thevolumet-ricandgravimetricenergydensi

9、tiesachievedthroughthese strategies have reached a plateau.Therefore,new types of capacitive energy storage systems areneededtopushtheenergydensityhigher.Zinc-ioncapacitors(ZICs),withmetalliczincastheanode,combinetheadvantagesofsupercapacitorsand batteries,i.e.,high power density and high en-ergy de

10、nsity,respectively,and are considered as apromisingnext-generationenergystoragedevice1012.Comparedwith lithium,sodium and potassium an-odes,zinchasabundantnaturalresources,highchem-ical stability,and offers high theoretical capacity(820mAhg1)13.Meanwhile,zinchasalowredoxpotential(0.76Vvs.SHE)andanou

11、tstandingtwo-electronreactionsystem1416.Therefore,ZICsexhibitenormouspotentialashigh-performanceenergystor-age devices1718.Currently,reported ZIC cathodesmainlyincludevanadiumoxide,manganeseoxideandcarbonmaterials.Amongthem,porouscarbonshaveReceived date:2023-02-21;Revised date:2023-03-23Correspondi

12、ng author:CHENDa-ming.E-mail:;LIDe.E-mail:;CHENYong,Professor.E-mail:Author introduction:YUANPingandXIAOHao-mingcontributedequallytothisworkSupplementarydataassociatedwiththisarticlecanbefoundintheonlineversion.第38卷第3期新型炭材料(中英文)Vol.38No.32023年6月NEWCARBONMATERIALSJun.2023theadvantages of high specifi

13、c surface area,ad-justableporestructure,excellentphysicochemicalsta-bility,good electrical conductivity,abundant re-sources,andlowcost1922.Introducingoxygen-con-tainingfunctionalgroups(OFGs)hasbeenproventobeaneffectivestrategytoincreasethepseudocapacit-ance of porous carbons2325,which can further in

14、-creasestheenergydensityofZICs.Forinstance,Shuoetal.26demonstratedthatOFGs,suchascarboxylandcarbonylgroupsongrapheneoxide(GO),playakeyroleinimprovingthechemisorptionofzincionsandelectrochemicalchargestorageinaqueousZICs.Linetal.27preparedGObysolvothermalmethod,andthespecificcapacitanceofGOwasashigha

15、s276Fg1at0.1Ag1in1molL1H2SO4electrolyte.Highcapa-citancecanbeattributedtotheOFGsonthecarbonsurface,mainlycarbonylandhydroxylgroups,lead-ingtoabundantpseudocapacitanceandgoodwettabil-ity.AlthoughaqueousZICshavereceivedsignific-antresearchattentionduetotheirlow-costandsafety,somelimitationsstillneedto

16、beovercome,suchasir-reversiblehydrogenevolutionreactionandpoorper-formance at low-temperature conditions.Comparedwithaqueoussystems,organicelectrolytesallowforawiderpotentialwindow,leadingtoimprovedenergydensity.Huetal.28proposedahigh-performanceZICusingZnCl2/EtOHaselectrolyte,whichcanworkatultra-lo

17、wtemperaturesof78Candexhibitexcel-lentcyclingperformanceofupto30000times.Com-paredwithotherorganicsolvents,EtOHisnon-toxic,cost-effective,and allows ZICs to be installed dir-ectlyunderair.Furthermore,thechemicalstabilityofEtOHinhibitssidereactionsandexpandsthevoltagewindow.Additionally,thesolvations

18、tructureZnCl(EtOH)5+formed with ZnCl2 can inhibit thegrowthofzincdendritesandprovidegoodcyclingsta-bility.Therefore,ZICsbasedonEtOHshowhighen-ergy density,wide working temperature range andeasy fabrication,making this system promising forpracticalapplications.Sincenumerousstudiesreportthepositiveinf

19、lu-enceofOFGsinaqueousZICs,introducingOFGsinEtOH-basedZICsisapromisingstrategytoimproveperformance.However,this has not yet been ad-equatelyinvestigated.Therefore,inthisstudy,OFGswereintroducedtothesurfaceofACbynitricacidoxidation,andtheirevolutioninthesubsequentheattreatmentandtheirinfluenceonthepe

20、rformanceofZICswithZnCl2/EtOHelectrolytewasstudied.Atop-timum conditions,a significant capacitance increaseby56%,i.e.,from125to195Fg1at1Ag1,wasob-served.This work provides new insights into con-structingOFGsonthesurfaceofcarbonmaterialsandhowtheyinfluencetheperformanceofEtOH-basedZICs.2ExperimentalA

21、Cwaspreparedfromcoconutshellactivatedbywater steam,washed with 10%dilute nitric acid at120Cfor5handindeionizedwatertoobtainneut-ralpH(namedAC-O).Then,theobtainedAC-Oma-terialwasannealedat400,500and600Cfor2h,ataheatingrateof5Cmin1underAratmosphere,andthe samples were denoted as AC-O-400,AC-O-500andAC

22、-O-600,respectively.ThespecificsurfaceareaoftheACswasmeas-uredbyArabsorptionat87K.Theporesizedistribu-tion was analyzed by the quenching solid densityfunctional theory(QSDFT)method based on a slitpore model.Scanning electron microscopy(SEM)was used to characterize the morphologies of thesamples.Thec

23、rystallinestructureswereidentifiedbyX-raydiffraction(XRD)andRamanspectroscopy.X-ray photoelectron spectroscopy(XPS)and Fouriertransforminfrared spectroscopy(FTIR)were ex-ecutedto investigate the surface chemical composi-tionsandoxidationstatesoftheOFGsontheACma-terials.ThecathodeofZICwasmadeofactiva

24、tedcar-bon,conductive carbon black and polytetrafluoro-ethylene in the mass ratio of 85105 by rollingfilm method28.Then it was cut into carbon sheetswitha10mmdiameterandweighing1.5mgwhichwasthenpressedoncarbonpaperwithadiameterof12mmunder10MPapressure.TheanodeofZICwas第3期YUANPingetal:Optimizingoxygen

25、substituentsofacarboncathodeforimprovedcapacitive523zinc foil with thickness of 20 m and diameter of10mm.Theelectrolytewas2molL1ZnCl2/EtOHsolution.Cyclicvoltammogram(CV)andelectrochemicalimpedancespectroscopy(EIS)weremeasuredonanIVIUM electrochemical workstation to evaluate theelectrochemicalperform

26、ance.EISwasperformedatavoltageamplitudeof5mVinthefrequencyrangeof100kHz-0.01Hz.Thegalvanostaticcharging/dischar-ging(GCD)curvesweretestedonaNewarebatterycharging/dischargingsysteminavoltagewindowof1.8 V at 3 A g1.The energy density(E)and thepowerdensity(P)oftheZICswerecalculatedbasedontheEq.(1)andEq

27、.(2):E=CV2/2(1)P=E/t(2)whereCand Vrepresentspecificgravimetriccapacit-anceandvoltagewindow,respectively.3ResultsanddiscussionFig.1a,1bandS1showthemorphologiesoftheAC,AC-O-500 and AC-O samples,respectively.They exhibited similar irregular particles with largepores,indicatingthatthemorphologyofcarbonw

28、asnotsubjectedtosignificantchangeafternitricacidox-idation and thermal treatment.Some interconnectedporouschannelscaneasilybeobserved,whichcanactasreservoirsforelectrolyteionsandreducethedis-tancebetweentheelectrodesurfaceandions2930.TheEDSmappingsofAC-O-500(Fig.1candd)revealauniformdistributionofCa

29、ndO,demonstratingthatOwas successfully retained in the sample after nitricacidandthermaltreatments.Tostudythechangeinthespecificsurfaceareasandporestructureofthesamples,Aradsorptionanddesorption isotherms were measured at 87 K,asshowninFig.2a.Allthesamplesexhibitedtype/isotherms,indicatingthattheACs

30、weremainlycom-posedofmicro-andmesopores31.Suchporousfea-turesendowACswithagoodenergystoragecapacitybecausemicroporescanprovideabundantactivesitesandmesoporesarebeneficialforfastiontransport3233.ThespecificsurfaceareaoftheAC-Otreated with nitric acid decreased from 1751.16 to1240.78m2g1comparedwithAC

31、(Table1).Afterannealing,the specific surface area of AC-O in-creased slightly to 1386.31 m2 g1 at 600 C.AsshowninFig.2b,theporesizedistributionsofAC,AC-O,AC-O-400,AC-O-500andAC-O-600indicatethepresenceofmainlymicroporeslessthan2nminsize.Thetotalporevolumeandmicroporesvolumedecreasedwhentreatedwithni

32、tricacidandincreasedslightlyafterannealing,indicatingthatthenitricacidtreatment destroyed some micropores,reducing thespecificsurfaceareaandporevolume.Furthermore,theintroductionofexcessOFGscanalsoblockpartoftheporestructure,whichcanbeexplainedbythein-creaseinspecificsurfaceareaandporevolumeaftersub

33、sequent thermal treatment reducing the oxygencontent34.ThecrystalstructureofAC,AC-O,AC-O-400,AC-O-500andAC-O-600wascharacterizedbyXRD(Fig.2c).Diffractionpeakscenteredat23and43correspond to the(002)and(100)crystal planes,whicharethecharacteristicsofdisorderedamorphouscarbon3536.Allthesamplesshowednea

34、rlyidenticalXRD patterns,indicating that the treatment processdidnotchangetheircrystalstructure.Furthermore,thedefectsandamorphousstructuresofthesampleswereanalyzed by Raman spectroscopy.As illustrated inFig.2d,theintensityratio(ID/IG)betweentheD-peak(a)(b)(c)(d)4 m4 m5 m5 mOCFig.1SEMimagesof(a)ACan

35、d(b)AC-O-500.(c,d)Elementalmap-pingimagesofAC-O-500524新型炭材料(中英文)第38卷0.00.20.40.60.81.00200400600800(a)(b)(c)(e)35.118.628.630.225.3ACAC-O-500AC-O-600AC-OAC-O-400(d)AC-O-600Volume/(cm3/g)Relative pressure/(p/p0)ACAC-OAC-O-400AC-O-500AC-O-600ACAC-OAC-O-400AC-O-500123450.00.20.40.60.8dV/(cm3 nm1 g1)Por

36、e size/nm10203040506070802/()Intensity/(a.u.)AC-O-600AC-O-500AC-O-400AC-OAC5001000150020002500Raman shift/cm1AC-O-500AC-O-400AC-OACID/IG=1.18ID/IG=1.15ID/IG=1.12ID/IG=1.13ID/IG=1.12DGAC-O-600Intensity/(a.u.)Fig.2(a)Aradsorption/desorptionisotherms,(b)Poresizedistributions,(c)Ramanspectra,(d)XRDpatte

37、rnsand(e)ContactanglesofAC,AC-O,AC-O-400,AC-O-500andAC-O-600Table 1 Structural parameters of AC,AC-O,AC-O-400,AC-O-500 and AC-O-600SamplesSBETa/(m2g1)SMicrob/(m2g1)VTotalc/(cm3g1)VMicrod/(cm3g1)AC1751.161500.970.9040.734AC-O1240.781093.440.7340.521AC-O-4001221.511001.250.6840.498AC-O-5001286.621020.

38、910.6990.519AC-O-6001386.311086.030.7410.558Note:a-BET(Brunauer-Emmett-Teller)surfacearea.b-MicroporespecificsurfaceareaobtainedfromtheQSDFTmethod.c-Single-pointtotalporevolumeatp/p0=0.995.d-MicroporevolumeobtainedfromtheQSDFTmethod.第3期YUANPingetal:Optimizingoxygensubstituentsofacarboncathodeforimpr

39、ovedcapacitive525at1350cm1andtheG-peakat1580cm1cande-scribethegraphitizationdegreeofthesamples.TheID/IGvalueoftheAC-Osampleafternitricacidtreat-mentwasslightlylowerthanAC,indicatingthatthegraphitizationdegreeofthecarbonmaterialwasim-provedbytheoxidationtreatment.TheID/IGvalueofthematerialremainedunc

40、hangedafterthermaltreat-ment.Contactanglemeasurementswereconductedtoinvestigatethesurfacechemistryofallsampleswith2molL1ZnCl2/EtOHelectrolyteasthetestdroplets(Fig.2e).ThecontactanglesfortheAC-O,AC-O-400,AC-O-500andAC-O-600samplesweresmallerthanthatobservedwithAC.AC-O-500hadthesmal-lest contact angle

41、 of 18.6,indicating its excellentwettability after the oxidization and heat treatment.Therefore,theintroductionofOFGselevatedthesur-facewettabilityofACmaterials.Theimprovedsur-facewettabilitycouldlowertheelectrode/electrolyteinterfaceresistance,inturn,facilitatingtheaccessibil-ityofzincions37.Toinve

42、stigatetheinfluenceofOFGsontheca-pacitanceoftheACmaterialsaftertheoxidationandthermaltreatments,theelectrochemicalperformancesofAC,AC-O,AC-O-400,AC-O-500andAC-O-600weresystematicallystudiedbyCV,GCDandEIS.AsdepictedinFig.3a,underascanrateof10mVs1,acoupleofobviousredoxpeakscanbeobserved,indic-ating th

43、e reversible redox reaction during CV tests.Comparedtoothersamples,AC-O-500displayedthelargestintegralCVarea,indicatingitshighestspecif-iccapacitance and optimized surface functionaliza-tion.Besides,theCVcurvesdidnotexhibitsignific-antdeformationatascanraterangeof1-100mVs1(Fig.3b-d),implyingthatthes

44、ystemshowedfastelec-trochemicalreactionkinetics38.Tofurtherexplorethechargestoragecontributionandelectrochemicalkinet-ics behavior,the CV curves measured at differentscanningrateswereanalyzedtodistinguishthecapa-citivechargestoragecontributionanddiffusioncon-1510505101510 mV/s20 mV/s30 mV/s40 mV/s10

45、 mV/s20 mV/s30 mV/s40 mV/s50 mV/s60 mV/s80 mV/s100 mV/s50 mV/s60 mV/s80 mV/s100 mV/sZnCl2/EtOH ACZnCl2/EtOH AC-O-5000.40.20.00.20.4AC-O-5001 mV/s Capacitance76.6%0.30.20.10.00.10.20.3 Capacitance1 mV/sAC71.9%0.40.20.00.20.4 AC AC-O-500ZnCl2/EtOH 1 mV/sPeak 1Peak 2Peak 3Peak 412345020406080100120Cont

46、ribution/%Scan rate/(mV/s)AC AC-O-50071.976.676.179.983.185.482.479.685.188.10.00.20.40.60.80.60.30.00.30.6Log(current density)/(A g1)Log(scan rate,mV s1)Cathodic peak(AC-O-500),b=0.892Anodic peak(AC-O-500),b=0.806Cathodic peak(AC),b=0.781Anodic peak(AC),b=0.769010203040010203040Z/Z/ACAC-O-500Fittin

47、gFitting0.00.40.81.21.63210123(a)(b)(c)(f)(e)(d)(g)(h)(i)AC-O-500 AC-O-600Current density/(A g1)Current density/(A g1)15105051015Current density/(A g1)Current density/(A g1)Current density/(A g1)Current density/(A g1)Potential/V0.00.40.81.21.6Potential/V0.00.40.81.21.6Potential/V0.00.40.81.21.6Poten

48、tial/V0.00.40.81.21.6Potential/V0.00.40.81.21.6Potential/V ACAC-O AC-O-400ZnCl2/EtOH 10 mV/sR1W1R2R3CPE2CPE1Fig.3(a)CVcurvesatdifferentscanratesfor(b)ACand(c)AC-O-500,(d)CVcomparisonofACandAC-O-500at1mVs1,(e,f)contributionratioofthecapacitivecapacities,(g)contributionratios,(h)bvaluesinboththecharge

49、anddischargeprocessesofACandAC-O-500,(i)nyquistplotsofACandAC-O-500526新型炭材料(中英文)第38卷trol charge contributions(Fig.3e-g)39.When thescanningratewas1mVs1,theobtainedresultre-vealedthatthecapacitivechargecontributionofACwas71.9%,whilethatofAC-O-500was76.6%.Thus,basedontheabovementionedresults,AC-O-500de

50、-liveredthehighestspecificcapacitance.Thecorrelationbetweenthelogarithmofcurrentdensity(log i)and scan rate(log v)is shown inFig.3h,wherethebvalueofasample,indicativeofthereactionrate,canbecalculatedfromtheslopeofthetrend.Here,bvaluecloseto0.5indicatesslowre-actionkinetics,whilebvaluecloseto1corresp

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服