ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:931.50KB ,
资源ID:5982507      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5982507.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学1.3《空间几何体的表面积与体积》教案新人教A版必修2.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学1.3《空间几何体的表面积与体积》教案新人教A版必修2.doc

1、1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教

2、学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。2、教学用具:实物几何体,投影仪四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形

3、构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:r1为上底半径 r为下底半径 l为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。 (3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。(s,s分别我上下底面面积,h为台柱高)4、例题分析讲解(课本)例1、 例2、 例35、巩固深化、反馈矫正教师

4、投影练习1、已知圆锥的表面积为 a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 。 (答案:)2、棱台的两个底面面积分别是245c和80,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。 (答案:2325cm3)6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。7、评价设计习题1.3 A组1.31.3.2 球的体积和表面积一. 教学目标 知识与技能通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割求和化为准确和”,有利于同学们进一步学习微积分和近代数学知识

5、。能运用球的面积和体积公式灵活解决实际问题。培养学生的空间思维能力和空间想象能力。 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式R3和面积公式R2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。难点:推导体积和面积公式中空间想象能力的形成。三. 学法和教学用具 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌

6、握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 教学用具:投影仪四. 教学设计(一) 创设情景教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。(二) 探究新知1球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积

7、可以按“分割求和化为准确和”的方法来进行。步骤:第一步:分割如图:把半球的垂直于底面的半径作n等分,过这些等分点,用一组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底面是“小圆片”的底面。如图:得第二步:求和第三步:化为准确的和当n时, 0 (同学们讨论得出)所以 得到定理:半径是的球的体积练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm3)2球的表面积:球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为

8、准确和”方法推导。思考:推导过程是以什么量作为等量变换的? 半径为R的球的表面积为 R2 练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。 (答案50元)(三) 典例分析 课本P47 例4和P29例5(四) 巩固深化、反馈矫正正方形的内切球和外接球的体积的比为 ,表面积比为 。 (答案: ;3 :1)在球心同侧有相距9cm的两个平行截面,它们的面积分别为49cm2和400cm2,求球的表面积。 (答案:2500cm2)分析:可画出球的轴截面,利用球的截面性质求球的半径(五) 课堂小结 本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。(六) 评价设计 作业 P30 练习1、3 ,B(1)高考学习网中国最大高考学习网站G | 我们负责传递知识!

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服