ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:292KB ,
资源ID:5969635      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5969635.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2012高三数学一轮复习课时限时检测-第九单元-统计、统计案例、算法-第3节.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2012高三数学一轮复习课时限时检测-第九单元-统计、统计案例、算法-第3节.doc

1、 (时间60分钟,满分80分) 一、选择题(共6个小题,每小题5分,满分30分) 1.(2010·江南十校)最小二乘法的原理是(  ) A.使得yi-(a+bxi)]最小 B.使得yi-(a+bxi)2]最小 C.使得y-(a+bxi)2]最小 D.使得yi-(a+bxi)]2最小 解析:根据回归方程表示到各点距离的平方和最小的直线方程,即总体偏差最小,亦即yi-(a+bxi)]2最小. 答案:D 2.对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其回归方程中的截距为(  ) A.=y+x         B.=+

2、 C.=y-x D.=- 解析:由回归直线方程恒过(,)定点. 答案:D 3.对于给定的两个变量的统计数据,下列说法正确的是(  ) A.都可以分析出两个变量的关系 B.都可以用一条直线近似地表示两者的关系 C.都可以作出散点图 D.都可以用确定的表达式表示两者的关系 解析:给出一组样本数据,总可以作出相应的散点图,但不一定能分析出两个变量的关系,更不一定符合线性相关或有函数关系. 答案:C 4.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果: 冷漠 不冷漠 总计 多看电视 68 42 110 少看电视 20

3、38 58 总计 88 80 168 则大约有多大的把握认为多看电视与人变冷漠有关系(  ) A.99% B.97.5% C.95% D.90% 解析:可计算K2=11.377>6.635. 答案:A 5.(2010·南通模拟)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是(  ) A.由样本数据得到的回归方程=x+必过样本中心(,) B.残差平方和越小的模型,拟合的效果越好 C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好 D.若变量y和x之间

4、的相关系数为r=-0.9362,则变量y和x之间具有线性相关关系 解析:C中应为R2越大拟合效果越好. 答案:C 6.(2010·中山四校)甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表: 甲 乙 丙 丁 r 0.82 0.78 0.69 0.85 m 106 115 124 103 则哪位同学的试验结果体现A、B两变量有更强的线性相关性(  ) A.甲 B.乙 C.丙 D.丁 解析:丁同学所得相关系数0.85最大,残差平方和m最小,所以A、B两变量线性相

5、关性更强. 答案:D 二、填空题(共3个小题,每小题5分,满分15分) 7.据两个变量x,y之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系(答“是”或“否”)________. 答案:否 8.某小卖部为了了解热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表: 气温(℃) 18 13 10 -1 杯数 24 34 38 64 由表中数据算得线性回归方程=x+中的≈-2,预测当气温为-5℃时,热茶销售量为________杯.(已知回归系数=,=-) 解析:根据表格中的数据可求得=(18

6、+13+10-1)=10,=(24+34+38+64)=40. ∴=-=40-(-2)×10=60,∴=-2x+60,当x=-5时,=-2×(-5)+60=70. 答案:70 9.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列结论中,正确结论的序号是________. ①有95%的把握认为“这种血清能起到预防感冒的作用”; ②若某人未使用该血清,那么他在一年中有95%的可

7、能性得感冒; ③这种血清预防感冒的有效率为95%; ④这种血清预防感冒的有效率为5%. 解析:K2≈3.918≥3.841,而P(K2≥3.814)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆. 答案:① 三、解答题(共3个小题,满分35分) 10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系

8、中画出表中数据的散点图; (2)求出y关于x的线性回归方程=bx+a,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时? (注:=,=-) 解:(1)散点图如图. (2)由表中数据得:iyi=52.5, =3.5,=3.5,=54,∴b=0.7,∴a=1.05, ∴=0.7x+1.05, 回归直线如图所示. (3)将x=10代入回归直线方程,得=0.7×10+1.05=8.05, ∴预测加工10个零件需要8.05小时. 11.已知x、y之间的一组数据如下表: x 1 3 6 7 8 y 1 2 3 4 5 (1)从x、y

9、中各取一个数,求x+y≥10的概率; (2)针对表中数据,甲、乙两同学给出的拟合直线分别为y=x+1与y=x+,试利用“最小二乘法”判断哪条直线拟合程度更好. 解:(1)从x、y中各取一个数组成数对(x,y),共有25对,其中满足x+y≥10的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共9对,故所求概率为 P=,所以使x+y≥10的概率为. (2)用y=x+1作为拟合直线时,y的实际值与所得的y值的差的平方和为s1=(1-)2+(2-2)2+(3-3)2+(4-)2+(5-)2=. 用y=x+作为拟合直线时,y的实际

10、值与所得的y值的差的平方和为s2=(1-1)2+(2-2)2+(3-)2+(4-4)2+(5-)2=. 因为s1>s2,故直线y=x+的拟合程度更好. 12.(2010·辽宁高考)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂: 分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.1

11、0, 30.14) 频数 12 63 86 182 92 61 4 乙厂: 分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数 29 71 85 159 76 62 18 (1)试分别估计两个分厂生产的零件的优质品率; (2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”? 甲厂 乙厂

12、 合计 优质品 非优质品 合计 附K2=, P(K2≥k) 0.05  0.01 k 3.841 6.635 解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为=72%; 乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为=64%. (2) 甲厂 乙厂 合计 优质品 360 320 680 非优质品 140 180 320 合计 500 500 1 000 K2=≈7.35>6.635, 所以有99%的把握认为“两个分厂生产的零件的质量有差异”. - 6 - 用心 爱心 专心

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服