ImageVerifierCode 换一换
格式:DOC , 页数:49 ,大小:2MB ,
资源ID:5964378      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5964378.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(管理运筹学课后答案——谢家平.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

管理运筹学课后答案——谢家平.doc

1、管理运筹学 管理科学方法 谢家平 第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量;

2、(4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项 bi0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件 AX =b,X0 的解,称为可行解。 基可行解:满足非负性

3、约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即 j 0 ,但其对应的系数列向量 Pk 中,每一个元素 aik (i=1,2,3,m)均非正数,即有进基变量但找不到离基变量。 无可行解:当引入人工变量,最末单纯型发表中的基变量含有非零的人工变量,即人工变量不能全出基,则无可行解。 7. 单纯形法需要有一个单位矩

4、阵作为初始基。当约束条件都是“”时,加入松弛变量就形成了初始基,但实际问题中往往出现“”或“”型的约束,这就没有现成的单位矩阵。需要采用人造基的办法,无单位列向量的等式中加入人工变量,从而得到一个初始基。人工变量只有取 0 时,原来的约束条件才是它本来的意义。为保证人工变量取值为 0,令其价值系数为-M(M 为无限大的正数,这是一个惩罚项)。如果人工变量不为零,则目标函数就不能实现最优,因此必须将其逐步从基变量中替换出。对最小化问题,在目标函数中人工变量的系数取 M。 8. 9.10. (1)C10,C20,且 d0 (2)C1=0,C20 或 C2=0,C10(3)C1 0,d0,a20,d

5、/43/a2 (4)C20,a1 0 (5)x1 为人工变量,且 C1 为包含 M 的大于 0 数,d/43/a2;或者 x数,a10,d0。11.2为人工变量,且 C2为包含 M 的大于 0 12. 设 xij 为电站向某城市分配的电量,建立模型如下: 13. 设 x1为产品 A 的产量, x2为产品 B 的产量,x3为副产品 C 的销售量, x4为副产品 C 的销毁量,问题模型如下: 第二章 1. (2)甲生产 20 件,乙生产 60 件,材料和设备 C 充分利用,设备 D 剩余 600 单位 (3)甲上升到 13800 需要调整,乙下降 60 不用调整。 (4)非紧缺资源设备 D 最多可

6、以减少到 300,而紧缺资源材料最多可以增加到 300,紧缺资源设备 C 最多可以增加到 360。 2.设第一次投资项目 i 为 xi,第二次投资项目 i 设为 xi ,第三次投资项目 i 设为 xi 。 3.设每种家具的产量为4.设每种产品生产 xi 5(1)设 xi 为三种产品生产量 通过 Lindo 计算得 x1= 33, x2= 67, x3= 0, Z = 733 (2)产品丙每件的利润增加到大于 6.67 时才值得安排生产;如产品丙每件的利润增加到 50/6,通过 Lindo 计算最优生产计划为:x1=29 , x2= 46 , x3= 25 , Z = 774.9 。 (3)产品

7、甲的利润在6,15范围内变化时,原最优计划保持不变。 (4)确定保持原最优基不变的 q 的变化范围为-4,5。 (5)通过 Lindo 计算,得到 x1= 32, x2= 58, x3= 10, Z = 707 第三章 T1.原问题和对偶问题从不同的角度来分析同一个问题,前者从产品产量的角度来考察利润,后者则从形成产品本身所需要的各种资源的角度来考察利润,即利润是产品生产带来的,同时又是资源消耗带来的。 对偶变量的值 yi 表示第 i 种资源的边际价值,称为影子价值。可以把对偶问题的解 Y 定义为每增加一个单位的资源引起的目标函数值的增量。 2.若以产值为目标,则 yi 是增加单位资源 i 对

8、产值的贡献,称为资源的影子价格(Shadow Price)。即有“影子价格=资源成本+影子利润”。因为它并不是资源的实际价格,而是企业内部资源的配比价格,是由企业内部资源的配置状况来决定的,并不是由市场来决定,所以叫影子价格。可以将资源的市场价格与影子价格进行比较,当市场价格小于影子价格时,企业可以购进相应资源,储备或者投入生产;当市场价格大于影子价格时,企业可以考虑暂不购进资源,减少不必要的损失。3.(1)最优性定理:设 , 分别为原问题和对偶问题的可行解,且 C = b ,则 ,a分别为各自的最优解。 * *(2)对偶性定理:若原问题有最优解,那么对偶问题也有最优解,而且两者的目标函数值相

9、等。 (3)互补松弛性:原问题和对偶问题的可行解 X 、 Y 为最优解的充分必要条件是, 。 (4)对偶问题的最优解对应于原问题最优单纯形法表中,初始基变量的检验数的负值。若YS 对应原问题决策变量 x 的检验数; Y 则对应原问题松弛变量 xS 的检验数。4. 表示三种资源的影子利润分别为 0.89、4.89 和 0,应优先增加设备 C 台时以及增加材料可获利更多;14.8912,所以设备 C 可以进行外协加工,200.89E(S2) ,所以应该选择建大厂。 (2)将收益 720 万元的效用值定为 1,记 U(720) =1,最低收益值-480 万元的效用值定为 0,记 U(480) =0.

10、 U(-120)=0.5U(720)+0.5U(-480)=0.51+0.50=0.5 U(180)=0.5U(720)+0.5U(-120)=0.51+0.50.5=0.75 U(-340)=0.5U( 480)+0.5U(-120)=0.50+0.50.5=0.25 根据已知的几个收益值点的效用值,画出效用曲线: 从该效用曲线可以看出,该经理是风险厌恶者。如果采用建大厂的方案,一旦出现市场需求量低的状况,会亏损 20 万元,风险太大;而采用建小厂的方案,不会出现亏损。因此,经理决定建小厂。 第十章 11)建立层次模型 2)构造判断矩阵 3)一致性检验 4)层次单排序 5)层次总排序 2.一

11、个因素被分解为若干个与之相关的下层因素,通过各下层因素对该因素的重要程度两两相比较,构成一个判断矩阵。 通常我们很难马上说出所有 A1,A2,An 之间相对重要程度,但可以对 Ak与 Aj 间两两比较确定,取一些相对数值为标度来量化判断语言,如表所示。 3.一致性是指判断矩阵中各要素的重要性判断是否一致,不能出现逻辑矛盾。当判断矩阵中的元素都符合一致性特性时,则说明该判断矩阵具有完全一致性。 引入判断矩阵的一致性指标 C.I.,来检验人们思维判断的一致程度。C.I.值越大,表明判断矩阵偏离完全一致性的程度越大;C.I.值越小(越接近于 0),表明判断矩阵的一致性越好。 对于不同阶的判断矩阵,其 C.I.值的要求也不同。为度量不同阶判断矩阵是否具有满意的一致性,再引入平均随机一致性系数指标 R.I。 C.I.与 R.I.之比称为随机一致性比值记作 C.R。当 C.R.0.1 时,即认为判断矩阵具有满意的一致性;否则,C.R.0.1 时,认为判断矩阵不一致 4.层次单排序就是把本层所有要素针对上一层某要素来说,排出评比的优劣次序所谓层次总排序就是针对最高层目标而言,本层次各要素重要程度的次序排列。 5.将各指标值无量纲化和无极性化,可以使各指标的评价尺度统,然后才能对各方案的价值进行分析和评价。 6.计算 O-U 判断矩阵的相对权重向量: T即准则层的相对权重向量 WU = (0.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服