ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:105KB ,
资源ID:5963627      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5963627.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(基于微步驱动的开关磁阻电机转矩脉动控制系统.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于微步驱动的开关磁阻电机转矩脉动控制系统.doc

1、基于微步驱动的开关磁阻电机转矩脉动控制系统 作者:马庆强 王济浩 单位:山东大学控制科学与控制工程学院 摘要:   转矩脉动是开关磁阻电机的主要缺点之一。本文在借鉴步进电机微步驱动思想的基础上,通过细分绕组换相时刻电流使通电绕组在空间合成多个转矩矢量,控制电流大小维持转矩幅值基本恒定,从而减小转矩脉动。本文论述的控制策略在实验过程中得到认证,在减小转矩脉动和噪声方面有显著的成效。 关键词:   开关磁阻电机;转矩脉动;细分; Abstract:   Torque ripple is one of the major disadvantages of

2、 switched reluctance motor (SRM). This paper is based on the micro-stepping driving of stepping motor, subdivided the very phase current while changing the phase, then generates some torque vectors in the space, and controls the phases’ current to make the torque continuity. In the article, this con

3、trol strategy is made experiment, and the solution for reducing the torque ripple is good. Key words:   switched reluctance motor (SRM); torque ripple; micro-stepping; 1 引言   近几年来,在伺服应用系统领域中对各种转速的要求提高了人们对开关磁阻电机(简称SRM)的兴趣。主要原因还是由于SRM具有结构简单、成本低、运行可靠、低速转矩大、简单的功率转换电路、控制方式灵活和效率高等优点。虽然SRM在过去的

4、几年里有了很大发展,但仍存在一些问题有待研究,如与一般电机相比其转距脉动比较明显,这就限制了其在伺服传动系统中的应用。为了使SRM能在伺服领域中发挥其固有的优点,研究如何有效的抑制SRM低速转矩脉动具有十分重要的意义。在这方面各国学者做了大量的研究,有人提出按在饱和运行时产生近似正弦的转矩/转角静态特性来优化电动机的结构设计,并且采用伺服电动机控制器产生正弦的希望电流/转角分布,以此削弱瞬时转矩脉动。文献[1]中采用模糊自适emerging SRM.应控制方案,模糊参数从开始的自由选择到最后调整为最优。文献[2]中采用局部逼近的神经网络,对期望的电流波形进行在线学习,从而实现转矩脉动的最小化。

5、但上述方法并没得到广泛的实际应用,其原因主要是其控制方案复杂,难以实时控制。   本文中通过借鉴步进电机细分驱动技术,结合分析SRM矩角特性为本文的控制策略提供理论上的依据,并在实验过程中验证了控制策略的实效性,达到实验的目的,有效地减小转矩脉动,并使噪声大大减小。 2 微分驱动的原理 在步进电机的驱动控制中,将电机绕组中的电流对应各个平衡位置进行细分,由常规的矩形波供电改成阶梯波供电,绕组中的电流经过若干个阶梯上升到额定值或者从额定值经过若干个阶梯下降到零。经过细分后,驱动电流的变化幅度大大减小。故转子到达平衡位置时的过剩能量也大为减少;另一方面,控制信号的频率提高了N倍(细分

6、数),故可远离转子的低频谐振频率。因此,运用细分驱动不仅能使电机运行平稳,而且还能减弱或消除振荡引起的低频噪声。 从上述可以看出,步进电机的细分实质是在电机各相绕组的电流切换时代替原来的绕组电流直接通断的方法。对于SRM而言,其工作原理与大角度步进电动机相似,定子磁动势在空间以一个较大的步进角步进运行,由此我们考虑到在SRM驱动中是否也可以借鉴步进电机细分驱动的思想,在换相时细分绕组电流使通过绕组的电流阶梯变化,通过控制各相电流的大小使绕组转矩矢量在转子的各平衡位置保持大小基本恒定,即减小了转矩脉动。 3 SRM转矩矢量控制原理  在SRM矩角特性分析中,若忽略磁路的非线性因素影

7、响,电磁转距可表示为:   式中:L0、L1为自感的恒定分量和基波分量的幅值,可以认为是常数。   Nr为SRM转子齿数   由(1)、(2)可得: T(θ,i)=-Tmax*sin (Nrθ)……………………(3) 所以,每相绕组产生的基波电磁转矩是一种空间正弦波,稳定零位取决于该相磁极中心线的位置。电磁转矩是转子位置θ和相电流的函数。因此,可以用空间矢量TA代表A相绕组的电磁转矩,其相位和A相绕组磁极中心线一致。在开关磁阻电机步进运动分析中,旋转磁场转矩矢量图可以使分析形象化,在本文的分析中以(8/6)四相SR电动机为例,如图1。 图1 SRM旋转磁场转矩矢量

8、   对于(8/6)四相SR电动机而言,A相绕组产生的稳定零位和B相绕组产生的稳定零位错开一个步进角,在空间按几何角度15度,若用电角度表示90度。如规定转子顺时针方向旋转为正转,则只要按A-B-C-D的顺序依次给各相绕组供电,开关磁阻电动机的转子以步进角15度一步一步的正转。假定忽略电动机的互感,允许将转矩进行矢量相加,即得到图1所示的旋转磁场转矩矢量,其中TAB 、TBC、TCA和TAD称为派生转矩矢量,表示两相同时供电的合成转矩;TA、TB、TC、TD称为基本转矩矢量,他们相位取决于定子磁极中心线的空间位置,表示一相单独供电时的转矩,相临两个转矩错开步进角3.75度。派生转矩和基

9、本转矩的关系可表示为下列向量形式: Tab=Ta+Tb…………………………(4)   派生转矩矢量的相位可以通过对绕组电流幅值的控制加以调节,使它出现在基本转矩矢量之间的任何相位上,采用控制绕组电流的办法增加SRM的每转步数,提高分辨率,减小转矩脉动。随着电动机每转细分步数的增加,可供选择的最佳离散电流波形为正弦函数波形,如果能够控制各相绕组的电流为正弦波,则实现SRM的连续控制。 4 微分驱动在SRM控制系统中的实现 由以上对(8/6)SRM转矩控制原理的分析可知,开关磁阻电机细分驱动的核心就是为了实现转矩矢量幅值相等,控制相绕组电流跟随给定转速对应的给定电流大小,使实时转

10、速保持在给定转速误差范围内,从而有效减小了转矩的脉动。 同时导通的两相绕组电流可表示为下式,式中 为合成矢量对应的电流大小: ia=Im*cosθ; ib=Im*sinθ ; ………………………………………(5) 则合成电流矢量i(以ia为参考):   i是一个以Im为幅值,-θ为辐角的矢量。这样,由式(1)、(6)可知,每当θ的值发生变化时,合成的矢量转过一个相应的角度,且幅值大小保持不变,实现了恒力矩的细分驱动。利用式(5)可得到细分后通电相电流数据。   所以要控制转矩必须控制电流,而控制电流是以控制PWM功率变换器输出脉宽被调制的功率开关信号为直接控制量,使实际输

11、出电流按阶梯波电流变化。因此SRM的微分驱动要靠控制PWM的占空比来实现。用下式表示加在导通相绕组的PWM信号的占空比: Ya=Y*cosθ ; Yb=Y*sinθ ;……………………………………(7) 上式中:Y为占空比幅值; Ya,Yb分别为Y在通电相绕组的分量; θ为转矩角; (7)式中的占空比幅值Y与 速度闭环中的给定速度 通过量化换算得出线性对应关系: Y=k*n;k为比例系数; 所以在速度给定的前提下,占空比幅值Y保持恒定,由(7)式可知,只要调整特定平衡位置的转矩角 即可控制各相PWM脉宽占空比分量,根据(5)式与(7)式的对应关系,由各相占空比分量大小的变化从

12、而控制了导通相电流的大小。 (8/6)四相SRM转子极距角(周期)为60度,每相步进角为15度,因此微分驱动的行为即是要细分该15度的步进角,在15度的步进角中找到三个转矩平衡位置,由于SRM绕组电流的大小受PWM功率变换器控制,所以调节PWM输出脉宽即可使实际输出电流如图2所示按阶梯波电流变化,各相通电顺序为: 电机正转时:A-AB1-AB2-AB3-B-BC1-BC2-BC3-C-CD1-CD2-CD3-D-DA1-DA2-DA3-A 反转时:A-AD1-AD2-AD3-D-DC1-DC2-DC3-C-CB1-CB2-CB3-B-BA1-BA2-BA3-A 图2 (8/6)SR

13、M细分绕组理想电流波形   在SRM转子位置检测中,由光电旋转编码器检测转子位置产生较高分辨率的数字信号。如转子每旋转一周(360度)能产生N个信号,则称其为Np/r(脉冲/转)。把N个脉冲信号细分,每转过N/96个脉冲调整一次相绕组电流大小,使转子的一个大步距角细分成4个小的步距角。从而使电流用换相区代替换相点,即在换相时关断相电流不是立即关断到零,而是按阶梯下降;导通相也并不是立即导通,而是按阶梯逐渐导通。阶梯的宽度 即PWM脉宽占空比由32个脉冲转过的时间决定。 图3 SRM细分驱动控制原理图   控制系统原理如3图所示,实际转速与给定转速相比较产生的偏差信号通过调节器

14、经过PID运算产生给定转速对应PWM脉宽占空比Y,同时根据转子位置脉冲查表对应平衡位置转矩角θ对应的正余弦值,经过算术运算求得实时通电相PWM占空比幅度Ya、Yb,即控制了通过SRM绕组的有效电流大小。 5 实验与结论 本文论述的微分驱动SRM的控制策略在具体实施阶段,选用了Microchip公司的PIC18F2331高档八位单片机,该芯片内部集成了丰富的外设资源,其中功率控制PWM模块、CCP模块、A/D模块、光电编码器接口(QEI)等为SRM的控制提供了方便。 利用CCP模块的捕捉模式,当转子位置信息脉冲符合设定的条件时(上升沿或下降沿出现),中断标志位CCP1IF被硬件自动置位

15、产生一次CCP1捕捉中断。将TMR1的计数值传送到CCPR1寄存器。根据计数值可计算电机转速。 在PIC18F2331中,功率控制PWM模块支持三个PWM发生器和六个输出通道。在本系统中,功率变换部分采用半桥式电路,相与相之间完全独立,每相需要一个IGBT作为主开关器件,所以只要选用两个PWM发生器和四个输出通道即可满足电机的驱动控制。 A/D模块为10位高速转换器,可通过寄存器设置芯片的工作电压作为A/D转换的参考电压(即使用VCC为参考电压)。则模拟信号的输入范围为0~VREF。   相电流采样选用霍尔电流传感器采样电流信号,霍尔电流传感器本身已存在滤波电路,输出可直接提供给单片机

16、的A/D模块。   在本控制系统中采用了光电编码器测量转子位置,作为闭环控制的反馈量。PIC18F2331提供了这种编码器的接口电路,编码脉冲通过2个引脚QEA和INDX 输入到芯片内部作为输入时钟,时钟信号使位置计数器寄存器(POSCNT)递增。此寄存器的工作模式决定了是在QEA 输入沿递增。如果与周期寄存器MAXCNT 匹配该寄存器复位。如果允许位置计数器中断,当POSCNT复位时会产生一个中断。   由于本系统采用了外设资源集成度比较高的PIC单片机,所以硬件电路比较简单。 系统框图如下: 图4 系统框图   经过实验验证,该微分驱动控制方法使SRM最低可平稳运行在20

17、r/min的转速,在低速运行状态下的转矩脉动大大减小,转动时的噪声也得到了有效的改善。   但是如果在感性负载的情况下,电动机中电流的上升或衰减并不是瞬时完成的。尤其在SRM高速运行时,绕组中电流只有很短的时间来跟踪给定,因此微步细分的步数和转速都受到一定程度的限制,并不能无限微步细分。 参考文献 1 S. Mir, M.E. Elbuluk, I. Husain, Torque-ripple minimization in switched reluctance motors using adaptive fuzzy control, IEEE Trans. Industry Ap

18、pl. 35 (2) (1999) 461_/468 (March/April). 2 Reay D S , Green T C, Williams B W .Application of Associative Memory Neural Networks to the Control of a Switched Reluctance Motor[c].Proc.IECON’93,Maui,HI。 3 王宏华. 开关型磁阻电动机调速控制技术. 机械工业出版社, 1995. 4 王鸿钰,步进电机控制技术入门,1990 5 PIC18F2331/2431/4331/4431数据手册,Microchip Technology Inc 6 刘和平等 PIC18FXXX单片机程序设计及应用,北京航空航天大学出版社,2005 作者简介: 马庆强 1979年4月生,山东大学控制科学与控制工程学院硕士研究生,研究方向为微机智能控制 联系方式:山东大学控制科学与控制工程学院12#信箱 邮编:250061 电话:13791056901  作者单位:山东大学   地址:山东大学控制学院12# 250061  Email:maqqmail@

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服