ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:3.26MB ,
资源ID:5963565      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5963565.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(安徽省2013年高考数学第二轮复习-第2讲-填空题技法指导-文.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

安徽省2013年高考数学第二轮复习-第2讲-填空题技法指导-文.doc

1、 第2讲 填空题技法指导 填空题是高考三大题型之一,主要考查基础知识、基本方法以及分析问题、解决问题的能力,试题多数是教材例题、习题的改编或综合,体现了对通性通法的考查.该题型的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点.(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方式比较灵活.(3)从填写内容看,主要有两类:一类是定量填写型,即要求考生填写数值、数集或数量关

2、系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,即要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.近几年出现了定性型的具有多重选择的填空题. 1.直接法与定义法 数学中的填空题,绝大多数都能直接利用有关定义、性质、定理、公式和一些规律性的结论,经过变形、计算得出结论.使用直接法和定义法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的变换.解题时,对概念要有合理的分析和判断;计算时,要求推理、运算的每一步骤都应正确无误,还要求将答案书写准确、完整.少算多思是快速、准确地解答填空题的基本要求. 【例1

3、在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过点F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为__________. 【例2】已知圆A:(x+2)2+y2=1与定直线l:x=1,且动圆P和圆A外切并与直线l相切,则动圆的圆心P的轨迹方程是__________. 变式训练1 已知a=(m+1)i-3j,b=i+(m-1)j,其中i,j为互相垂直的单位向量,且(a+b)⊥(a-b),则实数m=__________. 2.特殊化法 当题目中暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特

4、殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效. 【例3】已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成立.数列{an}满足an=f(2n)(n∈N*),且a1=2.则数列的通项公式an=__________. 变式训练2 在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则=__________. 3.数形结合法 依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解填空题,称为数形结合型填空题,这类问题的几何意义一般较为明显.由于填空题不要求

5、写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观的分析,加上简单的运算,便可得出正确的答案. 【例4】曲线方程|x2-1|=x+k的实根随k的变化而变化,那么方程的实根的个数最多为__________. 变式训练3 若方程=kx-2k+2有两个不同的实数根,则实数k的取值范围为__________. 4.构造法 构造法就是通过对已知的条件和结论进行深入、细致的分析,抓住问题的本质特征,再联想与之有关的数学模型,恰当地构造辅助元素,将待证(求)问题进行等价转化,从而架起已知与未知的桥梁,使问题得以解决.构造法在函数、方程、不等式等方面有

6、着广泛的应用,特别是与数列、三角函数、空间几何体、复数等知识密不可分. 【例5】若锐角α,β,γ满足cos2α+cos2β+cos2γ=1,那么tan α·tan β·tan γ的最小值为__________. 变式训练4 如果sin3θ-cos3θ>cos θ-sin θ,且θ∈(0,2π),那么角θ的取值范围是__________. 5.等价转化法 从题目出发,把复杂的、生疏的、抽象的、困难的或未知的问题通过等价转化为简单的、熟悉的、具体的、容易的或已知的问题来解决,从而得出正确的结果. 【例6】已知函数f(x)=x3+x-6,若不等式f(x)≤m2-2m+3对于所有x∈[-2

7、2]恒成立,则实数m的取值范围是__________. 变式训练5 对于任意的|m|≤2,函数f(x)=mx2-2x+1-m的值恒为负,则实数x的取值范围为__________. 参考答案 方法例析 【例1】 +=1 解析:∵△ABF2的周长为16, ∴4a=16,解得a=4. ∵离心率e=,∴c=2.∴b2=8. ∵椭圆的焦点在x轴上,∴椭圆的标准方程为+=1. 【例2】 y2=-8x 解析:利用抛物线的定义,先判断出点P的轨迹再求方程.由题意可知,点P到直线x=1的距离比它到点A的距离小1,即点P到直线x=2的距离与到点A的距离相等,所以点P的轨迹是以A为焦点,直线x=

8、2为准线的抛物线,其方程为y2=-8x. 【变式训练1】 -2 解析:a+b=(m+2)i+(m-4)j,a-b=mi-(m+2)j, ∵(a+b)⊥(a-b),∴(a+b)·(a-b)=0. ∴m(m+2)i2+[-(m+2)2+m(m-4)]i·j-(m+2)(m-4)j2=0. ∵i,j为互相垂直的单位向量, ∴i·j=0,i2=1,j2=1. 从而可得m(m+2)-(m+2)(m-4)=0,解得m=-2. 【例3】 n·2n 解析:根据数列满足的关系式,进行恰当的赋值. ∵a1=2,∴2=f(21)=f(2). 令x=2n,y=2, ∴f(2n+1)=2f(2n)+

9、2n+1. ∴=+1,-=1. ∴=+(n-1)×1=n.∴an=n·2n. 【变式训练2】  解析:令a=3,b=4,c=5, 则△ABC为直角三角形,且cos A=,cos C=0,代入所求式子,得==. 【例4】 4 解析:如图所示,参数k是直线y=x+k在y轴上的截距,通过观察直线y=x+k与y=|x2-1|的公共点的变化情况,并通过计算可知,当k<-1时,曲线方程有0个实根;当k=-1时,有1个实根;当-1<k<1时,有2个实根;当k=1时,有3个实根;当1<k<时,有4个实根;当k=时,有3个实根;当k>时,有2个实根. 综上所述,可知实根的个数最多为4. 【变式

10、训练3】  解析:方程=kx-2k+2有两个不同的实数根,就是y=与y=kx-2k+2有两个不同的交点.由y=得(x-1)2+y2=1(y≥0),所以曲线y=是以(1,0)为圆心,以1为半径的位于x轴上方的半圆.由y=kx-2k+2,得y-2=k(x-2),它是经过点P(2,2),斜率为k的直线.如图,连接PO,kOP==1.过P作圆的切线PQ,由=1,得kPQ=, 所以<k≤1. 【例5】 2 解析:如图,设AB=a,AD=b,AA1=c,令α,β,γ分别为∠BAC1,∠C1AD,∠C1AA1, 从而有tan α·tan β·tan γ=··≥=2. 当且仅当a=b=c时,t

11、an α·tan β·tan γ取最小值2. 【变式训练4】  解析:不等式sin3θ-cos3θ>cos θ-sin θ⇔sin3θ+sin θ>cos3θ+cos θ. 构造函数f(x)=x3+x, ∵f′(x)=3x2+1>0,∴函数f(x)在R上是增函数, 故当sin θ>cos θ时,sin 3θ+sin θ>cos 3θ+cos θ成立. 又θ∈(0,2π),∴<θ<. 【例6】 (-∞,1-]∪[1+,+∞) 解析:∵f′(x)=3x2+1>0, ∴f(x)在x∈[-2,2]内是增函数. ∴f(x)在[-2,2]上的最大值是f(2)=4. ∴m2-2m+3≥4,解得m≤1-或m≥1+. 【变式训练5】  解析:对于任意的|m|≤2,有mx2-2x+1-m<0恒成立,即当|m|≤2时,(x2-1)m-2x+1<0恒成立. 设g(m)=(x2-1)m-2x+1, 则原问题转化为g(m)<0恒成立(m∈[-2,2]). ∴即 解得<x<. 即x的取值范围为. - 4 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服