1、123 角的平分线的性质(一)教学目标 (一)教学知识点 角平分线的画法、角平分线的性质1 (二)能力训练要求 1掌握角平分线的性质1 2会用尺规作一个已知角的平分线 (三)情感与价值观要求 在利用尺规作图的过程中,培养学生动手操作能力与探索精神 教学重点 利用尺规作已知角的平分线角平分线的性质1 教学难点 角的平分线的性质1 教学过程 一提出问题,创设情境问题:图中哪条线段的长可以表示点P到直线l的距离 ? 导入新课,明确学习目标 如果老师手里只有直尺和圆规,你能设计一个作角的平分线的操作方案吗?二合作交流 探究新知 探究1 想一想:下图是一个平分角的仪器,其中AB=AD,BC=DC将点A放
2、在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线你能说明它的道理吗?21世纪教育网版权所有 教师活动: 播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法学生活动: 观看多媒体课件,讨论操作原理 生1要说明AC是DAC的平分线,其实就是证明CAD=CAB 生2CAD和CAB分别在CAD和CAB中,那么证明这两个三角形全等就可以了 生3我们看看条件够不够 所以ABCADC(SSS) 所以CAD=CAB 即射线AC就是DAB的平分线生4原来用三角形全等,就可以解决角相等线段相等的一些问题 试一试:老师再提出问题: 通过上述探究,能否总结出尺规作
3、已知角的平分线的一般方法自己动手做做看然后与同伴交流操作心得21教育网(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示: 作已知角的平分线的方法: 已知:AOB 求作:AOB的平分线作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N(2)分别以M、N为圆心,大于MN的长为半径作弧两弧在AOB内交于点C(3)作射线OC,射线OC即为所求 (教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣) 点拨: 1在上面作法的第二步中,去掉“大于MN的长”这个条件行吗? 2第二步中所作的两弧交点一定在
4、AOB的内部吗? (设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯) 学生讨论结果总结: 1去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线 2若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在AOB的内部,也可能在AOB的外部,而我们要找的是AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是AOB的平分线了 3角的平分线是一条射线它不是线段,也不是直线,所以第二步中的两个限制缺一不可 4这种作法的可行性可以通过全等三角形来证明 探究2: 做一做1 师 任意作一个角AOB ,作出AOB的平分线OC ,在OC上任
5、取一点P过点P画PDOA,PE OB,点D、E为垂足分别测量PD、PE的长你得到什么结论?在OC上再取几个点试试发现并猜想角的平分线具有什么性质画一画: 拿出两名同学的画图,请大家评一评,以达明确概念的目的 生同学乙的画法是正确的同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求 生甲噢,对,我知道了 师同学甲,你再做一遍加深一下印象 教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢? 证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗? 生角平分线上的点到角的两边的距离相等 问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话学生通过讨论作出下列概括: OC平分AOB,PDOA,PEOB, PD=PE 于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等三、用一用:1、已知:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC,垂足分别是E,F.求证:EB=FC. 四反馈练习 五学生总结