ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:434KB ,
资源ID:5920442      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5920442.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(函数值域的求法及应用.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

函数值域的求法及应用.doc

1、函数值域的求法及应用 高考要求 函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题 重难点归纳 (1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域 (2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 (3)运用函数的值域解决实际问题 此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分

2、析能力和数学建模能力 典例讲解 例1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小? 如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小? 技巧与方法 本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决 解 设画面高为x cm,宽为λx cm,则λx2=4840,设纸张面积为S cm2, 则S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 将x=代入上式得 S=5000+4

3、4 (8+), 当8=,即λ=<1)时S取得最小值 此时高 x==88 cm, 宽 λx=×88=55 cm 如果λ∈[],可设≤λ1<λ2≤, 则由S的表达式得 又≥,故8->0, ∴S(λ1)-S(λ2)<0,∴S(λ)在区间[]内单调递增  从而对于λ∈[],当λ=时,S(λ)取得最小值 答 画面高为88 cm,宽为55 cm时,所用纸张面积最小 如果要求λ∈[],当λ=时,所用纸张面积最小 例2已知函数f(x)=,x∈[1,+∞ (1)当a=时,求函数f(x)的最小值 (2)若对任意x∈[1,+∞,f(x)>0恒成立,试求

4、实数a的取值范围 技巧与方法 解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得 (1)解 当a=时,f(x)=x++2 ∵f(x)在区间[1,+∞上为增函数, ∴f(x)在区间[1,+∞上的最小值为f(1)= (2)解法一 在区间[1,+∞上, f(x)= >0恒成立x2+2x+a>0恒成立 设y=x2+2x+a,x∈[1,+∞ ∵y=x2+2x+a=(x+1)2+a-1递增, ∴当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立, 故a>-3  解法二 f(x)=x++2

5、x∈[1,+∞ 当a≥0时,函数f(x)的值恒为正; 当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a, 当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>-3 例3设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+) (1)证明 当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M (2)当m∈M时,求函数f(x)的最小值 (3)求证 对每个m∈M,函数f(x)的最小值都不小于1  (1)证明 先将f(x)变形 f(x)=log3[(x-2m)2

6、m+], 当m∈M时,m>1,∴(x-m)2+m+>0恒成立, 故f(x)的定义域为R 反之,若f(x)对所有实数x都有意义,则只须x2-4mx+4m2+m+>0,令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M (2)解析 设u=x2-4mx+4m2+m+, ∵y=log3u是增函数,∴当u最小时,f(x)最小  而u=(x-2m)2+m+, 显然,当x=m时,u取最小值为m+, 此时f(2m)=log3(m+)为最小值 (3)证明 当m∈M时,m+=(m-1)+ +1≥3, 当且仅当m=2时等号成立 ∴log3(m+)≥lo

7、g33=1 巩固练习 1 函数y=x2+ (x≤-)的值域是( ) A(-∞,- B[-,+∞ C[,+∞ D(-∞,-] 2 函数y=x+的值域是( ) A (-∞,1 B (-∞,-1   C R D [1,+∞ 3 一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于()2千米 ,那么这批物资全部运到B市,最快需要_________小时(不计货车的车身长) 4 某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位 百台) (1)把利润表示为年产量的函数; (2)年产量多少时,企业所得的利润最大? (3)年产量多少时,企业才不亏本?

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服