ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:1.05MB ,
资源ID:5911343      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5911343.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(平面向量经典习题汇总.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

平面向量经典习题汇总.doc

1、平面向量经典习题汇总1.(北京理.2)已知向量a、b不共线,cabR),dab,如果cd,那么 ( ) A且c与d同向 B且c与d反向 C且c与d同向 D且c与d反向【解析】本题主要考查向量的共线(平行)、向量的加减法. 属于基础知识、基本运算的考查. 取a,b,若,则cab,dab, 显然,a与b不平行,排除A、B. 若,则cab,dab,即cd且c与d反向,排除C,故选D.2.(北京文.2)已知向量,如果,那么 A且与同向 B且与反向 C且与同向 D且与反向.【解析】本题主要考查向量的共线(平行)、向量的加减法. 属于基础知识、基本运算的考查. a,b,若,则cab,dab, 显然,a与b

2、不平行,排除A、B. 若,则cab,dab,即cd且c与d反向,排除C,故选D.3.(福建理.9;文.12)设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,ac a=c,则b c的值一定等于w.wA 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积C以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积 【解析】依题意可得故选C.4.(广东理.6)一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态已知,成角,且,的大小分别为2和4,则的大小为wA. 6 B. 2 C. D. w.w.w.k.s.5.u.【解析】,所以,选D.5. (

3、广东文.3)已知平面向量a= ,b=, 则向量 A平行于轴 B.平行于第一、三象限的角平分线 C.平行于轴 D.平行于第二、四象限的角平分线 【解析】,由及向量的性质可知,选C6.(湖北理.4,文7)函数的图象按向量平移到,的函数解析式为当为奇函数时,向量可以等于 【解析】由平面向量平行规律可知,仅当时,:=为奇函数,故选D.7. (湖北文.1)若向量a=(1,1),b=(-1,1),c=(4,2),则c=A.3a+b B. 3a-b C.-a+3b D. a+3b【解析】由计算可得故选B8.(湖南文.4)如图1, D,E,F分别是ABC的边AB,BC,CA的中点,则( )图1ABCD 图1【

4、解析】得, 或.故选A.9.(辽宁理,文.3)平面向量与的夹角为, ,则 ()()()4()12 【解析】,。选B10.(宁夏海南理.9)已知O,N,P在所在平面内,且,且,则点O,N,P依次是的 (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂心 (D)外心 重心 内心(注:三角形的三条高线交于一点,此点为三角型的垂心)【解析】;选C11.(全国理.6)设、是单位向量,且0,则的最小值为 ( )(A) (B) (C) (D)【解析】是单位向量 w.w.w.k.s.5.u.c.o.m ,故选D.12.(全国理,文.6)已知向量,,则(A) (B) (C) 5 (D) 25【

5、解析】将平方即可,故选CA B C P 第7题图 13.(山东理.7;文.8)设P是ABC所在平面内的一点,则()A. B. C. D.【解析】本题考查了向量的加法运算和平行四边形法则,可以借助图形解答因为,所以点P为线段AC的中点,所以应该选B。14.(陕西理.8)在中,M是BC的中点,AM=1,点P在AM上且满足学,则科网等于w.w.w.k.s.5.u.c.o.m (A) (B) (C) (D) 【解析】 故选A15.(浙江文.5)已知向量,若向量满足,则( )A B C D【解析】不妨设,则,对于,则有;又,则有,则有 故D16.(重庆理.4)已知,则向量与向量的夹角是( )ABCD【解

6、析】故选C17.(重庆文.4)已知向量若与平行,则实数的值是A-2B0C1D2【解析】法1:因为,所以由于与平行,得,解得。法2因为与平行,则存在常数,使,根据向量共线的条件知,向量与共线,故故选D二.填空题:1. (安徽理.14)给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是_.【解析】设 ,即2. (安徽文.14)在平行四边形ABCD中,E和F分别是边CD和BC的中点,若=+,其中,R ,则 _ .学科网【解析】,3.(广东理.10)若平面向量,满足,平行于轴,则 . w.w.w.k.s.5.u.c.o.m 【解析】或,则或.4.

7、(湖南文.15)如图2,两块斜边长相等的直角三角板拼在一起,若,则图2_,_ . 【解析】作,设,,由解得故5. (江苏文理.2).已知向量和向量的夹角为,则向量和向量的数量积= _。【解析】考查数量积的运算。 6.(江西理.13)已知向量,若,则= 【解析】7.(江西文.13)已知向量, ,若 则= 【解析】因为所以8.(天津理.15)在四边形ABCD中,=(1,1),则四边形ABCD的面积是 【解析】因为=(1,1),所以四边形ABCD为平行四边形,所以 则四边形ABCD的面积为9.(天津文.15)若等边的边长为,平面内一点M满足,则_.【解析】合理建立直角坐标系,因为三角形是正三角形,故

8、设这样利用向量关系式,求得M,然后求得,运用数量积公式解得为-2.三.解答题:1.(广东理.16) 已知向量与互相垂直,其中(1)求和的值;(2)若,求的值w.w.w.k.s.5.u.c.o.m 【解析】(1)与互相垂直,则,即,代入得,又,.(2),则,.2. (广东文.16)已知向量与互相垂直,其中(1)求和的值(2)若,,求的值【解析】(),即又, ,即,又,(2) , ,即 又 , w.w.w.k.s.5.u.c.o.m 3.(湖北理科17.) 已知向量()求向量的长度的最大值;()设,且,求的值。【解析】(1)解法1:则,即 w.w.w.k.s.5.u.c.o.m 当时,有所以向量的

9、长度的最大值为2.解法2:,当时,有,即,的长度的最大值为2.(2)解法1:由已知可得。,即。由,得,即。,于是。w.w.w.k.s.5.u.c.o.m 解法2:若,则,又由,得,即,平方后化简得 w.w.w.k.s.5.u.c.o.m 解得或,经检验,即为所求4. (湖南理.16)在中,已知,求角A,B,C的大小.【解析】设.由得,所以.又因此 .由得,于是.所以,因此,既.由知,所以,从而或,既或故或。5. (湖南文16.)已知向量()若,求的值;w.w.w.k.s.5.u.c.o.m ()若求的值。 【解析】() 因为,所以于是,故()由知,所以从而,即,于是.又由知,所以,或.因此,或 6. (江苏文理.15)设向量学科(1)若与垂直,求的值;学科网(2)求的最大值;学科网(3)若,求证:.网【解析】本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。7.(浙江理.18)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值【解析】(I)因为,又由,得,(II)对于,又,或,由余弦定理得,200904238.(浙江文.18)在中,角所对的边分别为,且满足, (I)求的面积; (II)若,求的值【解析】()又,而,所以,所以的面积为:()由()知,而,所以所以

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服