ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1.36MB ,
资源ID:5910708      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5910708.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(圆锥曲线中离心率及其范围的求解专题(教师版).doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆锥曲线中离心率及其范围的求解专题(教师版).doc

1、圆锥曲线中离心率及其范围的求解专题 【高考要求】 1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。 2.掌握解析几何中有关离心率及其范围等问题的求解策略; 3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。 【热点透析】 与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c)适合的不等式(组),通过解不等式组得出离心率的变化范围;

2、 (3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解范围等问题; (6)构造一个二次方程,利用判别式D³0。 2.解题时所使用的数学思想方法。 (1)数形结合的思想方法。一是要注意画图,草图虽不要

3、求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。 (2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。 (3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。 (4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。 【题型分析】 1. 已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,准线与双曲线的左准线重合,若双曲

4、线与抛物线的交点满足,则双曲线的离心率为( ) A. B. C. D. 解:由已知可得抛物线的准线为直线,∴ 方程为; 由双曲线可知,∴ ,∴ ,∴ ,. 2.椭圆()的两个焦点分别为、,以、为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为 ( B ) A. B. C. D. 解析:设点为椭圆上且平分正三角形一边的点,如图, 由平面几何知识可得, 所以由椭圆的定义及得: ,故选B. 变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率. 3. (09浙江理)过双

5、曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是 ( ) A. B. C. D. 【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,, 因此.答案:C 4. (09江西理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A. B. C. D. 【解析】因为,再由有从而可得,故选B 5.(08陕西理)双曲线(,)的左、右焦点分别是,过作倾斜角为的直

6、线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( B ) A. B. C. D. 6.(08浙江理)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D) (A)3 (B)5 (C) (D) 7.(08全国一理)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 . 8.(10辽宁文)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) (A) (B) (C) (D) 解析:选D.不妨设

7、双曲线的焦点在轴上,设其方程为:, 则一个焦点为 一条渐近线斜率为:,直线的斜率为:,, ,解得. 9.(10全国卷1理)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且=2,则C的离心率为________. 解析:答案: 如图,设椭圆的标准方程为+=1(a>b>0)不妨设B为上顶点,F为右焦点,设D(x,y).由=2,得(c,-b)=2(x-c,y), 即,解得,D(,-). 由D在椭圆上得:=1, ∴=,∴e==. 【解析1】如图,, 作轴于点D1,则由,得 ,所以,即,由椭圆的第二定义得 又由,得 【解析2】设椭圆

8、方程为第一标准形式,设,F分 BD所成的比为2,,代入 , 10. (07全国2理)设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( B ) A. B. C. D. 解 11. 椭圆的左焦点为F,若过点F且倾斜角为的直线与椭圆交于A、B两点且F分向量BA的比为2/3,椭圆的离心率e为: 。 本题通法是设直线方程,将其与椭圆方程联立,借助韦达定理将向量比转化为横坐标的比。思路简单,运算繁琐。下面介绍两种简单解法。 解法(一):设点A,B,由焦半径公式可得, 则,变形, 所以因为直线倾斜角为,所以有,所以 提示:本解法主要运

9、用了圆锥曲线焦半径公式,借助焦半径公式将向量比转化为横坐标的关系。焦半径是圆锥曲线中的重要线段,巧妙地运用它解题,可以化繁为简,提高解题效率。一般来说,如果题目中涉及的弦如果为焦点弦,应优先考虑焦半径公式。 解法(二): 12. (10辽宁理)(20)(本小题满分12分) 设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.椭圆C的离心率 ; 解: 设,由题意知<0,>0. (Ⅰ)直线l的方程为 ,其中. 联立得 解得 因为,所以. 即 得离心率

10、 ……6分 13. A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使 ∠OPA=,则椭圆离心率的范围是_________. 解析:设椭圆方程为=1(a>b>0),以OA为直径的圆:x2-ax+y2=0,两式联立消y得x2-ax+b2=0.即e2x2-ax+b2=0,该方程有一解x2,一解为a,由韦达定理x2=-a,0<x2<a,即0<-a<a<e<1. 答案:<e<1 14. 在椭圆上有一点M,是椭圆的两个焦点,若,椭圆的离心率的取值范围是; 解析: 由椭圆的定义,可得 又,所以是方程的两根,由, 可得,

11、即所以,所以椭圆离心率的取值范围是 15. (08湖南)若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是 A.(1,2) B.(2,+) C.(1,5) D. (5,+) 解析 由题意可知即解得故选B. 16.(07北京)椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是(  ) A. B. C. D. 解析 由题意得∴故选D. 17.(07湖南)设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( ) A. B. C.

12、 D. 分析 通过题设条件可得,求离心率的取值范围需建立不等关系,如何建立? 解析:∵线段的中垂线过点, ∴,又点P在右准线上,∴ 即∴∴,故选D. 点评 建立不等关系是解决问题的难点,而借助平面几何知识相对来说比较简便. 18. (08福建理)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(B) A.(1,3) B. C.(3,+) D. 分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?利用第二定义及焦半径判断 解析

13、∵|PF1|=2|PF2|,∴|PF1|-|PF2|=|PF2|=,|PF2|即∴ 所以双曲线离心率的取值范围为,故选B. 解2 如图2所示,设,, . 当点P在右顶点处有.∵,∴. 选B. 小结 本题通过设角和利用余弦定理,将双曲线的离心率用三角函数的形式表示出来,通过求角的余弦值的范围,从而求得离心率的范围. 点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于)则可建立不等关系使问题迎刃而解. 19.(08江西理)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是(C) A. B.

14、C. D. 解 据题意可知,∠M是直角,则垂足M的轨迹是以焦距为直径的圆.所以.又,所以.选C. 小结 本题是最常见的求离心率范围的问题,其方法就是根据已知条件,直接列出关于 a,b,c间的不等量关系,然后利用a,b,c间的平方关系化为关于a,c的齐次不等式,除以即为关于离心率e的一元二次不等式,解不等式,再结合椭圆或双曲线的离心率的范围,就得到了离心率的取值范围. 20. (04重庆)已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为:( ) A B C D

15、 ∵|PF1|=4PF2|,∴|PF1|-|PF2|=3|PF2|=,|PF2|即∴ 所以双曲线离心率的取值范围为,故选B. 21. 已知,分别为 的左、右焦点,P为双曲线右支上任一点,若的最小值为,则该双曲线的离心率的取值范围是( ) A B C D 解析 ,欲使最小值为,需右支上存在一点P,使,而即所以. 22. 已知椭圆右顶为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,椭圆的离心率e的取值范围是; 。 解:设P点坐标为(),则有 消去得若利用求根公式求运算复杂,应注意到方程的一个根为a,由根与系数关系知由得 23. 椭圆:的两焦点为,椭圆

16、上存在点使. 求椭圆离心率的取值范围 ; 解析 设……① 将代入①得 求得 . 点评:中,是椭圆中建立不等关系的重要依据,在求解参数范围问题中经常使用,应给予重视. 24. (06福建)已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 (A)    (B)    (C)    (D) 解析 欲使过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴ ≥,即即∴即故选C. 25. (04全国Ⅰ)设双曲线C:相交于两个不同的点A、B.求双曲线

17、C的离心率e的取值范围: 解析 由C与相交于两个不同的点,故知方程组 有两个不同的实数解.消去y并整理得 (1-a2)x2+2a2x-2a2=0. ① 所以解得 双曲线的离心率:∴ 所以双曲线的离心率取值范围是 总结:在求解圆锥曲线离心率取值范围时,一定要认真分析题设条件,合理建立不等关系,把握好圆锥曲线的相关性质,记住一些常见结论、不等关系,在做题时不断总结,择优解题.尤其运用数形结合时要注意焦点的位置等. 26.设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( D ) A. B. C. D.

18、 27. (09重庆卷文)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 . 【答案】 . 解法1,因为在中,由正弦定理得 则由已知,得,即 设点由焦点半径公式,得则 记得由椭圆的几何性质知,整理得 解得,故椭圆的离心率 28. (10四川理)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是 (A) (B) (C) (D) 解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点, 即F点到P点与A点的距

19、离相等 而|FA|= , |PF|∈[a-c,a+c],于是∈[a-c,a+c] 即ac-c2≤b2≤ac+c2 ∴Þ 又e∈(0,1)故e∈ 答案:D 29. 已知梯形ABCD中,|AB|=2|CD|,点E满足,双曲线过C、D、E三点,且以A、B为焦点,当时,双曲线离心率e的取值范围是: 。 分析:显然,我们只要找到e与的关系,然后利用解不等式或求函数的值域即可求出e的范围。 解:如图4,建立坐标系,这时CD⊥y轴, 因为双曲线经过点C、D,且以A、B为焦点, 由双曲线的对称性知C、D关于y轴对称。 依题意,记A(-C,0),C(h),E(x0

20、y0), 其中c=为双曲线的半焦距,h是梯形的高。 A O B x D C y E 图4 由,即(x0+c,y0)= (-x0,h-y0)得:x0=.设双曲线的方程为,则离心率e=。由点C、E在双曲线上,将点C、E的坐标和e=代入双曲线的方程得 将(1)式代入(2)式,整理得(4-4)=1+2,故=1. 依题设得,解得. 所以双曲线的离心率的取值范围是. 30.已知双曲线的左、右焦点分别为,若在双曲线的右支上存在一点,使得,则双曲线的离心率的取值范围为 . (答案:) 解析:方法一:由及双曲线第一定义式,得: ,,又. 因为点在右支

21、上运动,所以, 得,即,又,故填. 方法反思:若改变两个焦半径、的倍分关系,同理也可得出相应的离心率的范围. 方法二:若思考满足的动点的几何意义,将会体现出本试题更大的价值! (引导学生思考:到两个定点的距离之比为定值的点的轨迹是什么?同时启动几何画板.) 因,,根据阿氏圆的定义可得:点应在以为直径的圆上,其中为有向线段的内分点,为有向线段的外分点.所以双曲线上若存在点满足题意,必有,所以. 故. 方法反思:通过对条件的转化,揭示了本题中动点的本质属性,从而转化为圆心在轴上的圆和双曲线有公共点的问题,体现了模拟试题的综合性,同时也提高了同学们分析问题和解决问题的能力. 圆锥曲线的相关离心率问题 共12页 本页为第- 13 -页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服