ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:34.36KB ,
资源ID:5904314      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5904314.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(数据挖掘过程中的预处理阶段.docx)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数据挖掘过程中的预处理阶段.docx

1、数据挖掘过程中的预处理阶段 整个数据挖掘过程中,数据预处理要花费60%左右的时间,而后的挖掘工作仅占总工作量的10%左右[1] 。经过预处理的数据,不但可以节约大量的空间和时间,而且得到的挖掘结果能更好地起到决策和预测作用。 一般的,数据预处理分为4个步骤,本文把对初始数据源的选择作为数据预处理过程中的一个步骤,即共分为5个步骤。因为,如果在数据获得初期就有一定的指导,则可以减少数据获取的盲目性以及不必要噪声的引入且对后期的工作也可节约大量的时间和空间。整个预处理过程见下图: 数据清理 初始数据的获取 数据集成和融合 数据变换 数据规约 数据挖掘知识评价等等 挖掘结果 二次

2、预处理 1 初始源数据的获取 研究发现,通过对挖掘的错误结果去寻找原因,多半是由数据源的质量引起的。因此,原始数据的获取,从源头尽量减少错误和误差,尤其是减少人为误差,尤为重要。首先应了解任务所涉及到的原始数据的属性和数据结构及所代表的意义,确定所需要的数据项和数据提取原则,使用合适的手段和严格的操作规范来完成相关数据的获取,由于这一步骤涉及较多相关专业知识,可以结合专家和用户论证的方式尽量获取有较高含金量(预测能力)的变量因子。获取过程中若涉及到多源数据的抽取,由于运行的软硬件平台不同,对这些异质异构数据库要注意数据源的连接和数据格式的转换。若涉及到数据的保密,则在处理时应多注意此类

3、相关数据的操作且对相关数据作备注说明以备查用。 2 数据清理 数据清理 数据清理是数据准备过程中最花费时间、最乏味,但也是最重要的步骤。该步骤可以有效减少学习过程中可能出现相互矛盾情况的问题。初始获得的数据主要有以下几种情况需要处理: 1)含噪声数据。处理此类数据,目前最广泛的是应用数据平滑技术。1999年,Pyle系统归纳了利用数据平滑技术处理噪声数据的方法,主要有:① 分箱技术,检测周围相应属性值进行局部数据平滑。②利用聚类技术,根据要求选择包括模糊聚类分析或灰色聚类分析技术检测孤立点数据,并进行修正,还可结合使用灰色数学或粗糙集等数学方法进行相应检测。③利用回归函数或时间序列分析

4、的方法进行修正。④计算机和人工相结合的方式等。 对此类数据,尤其对于孤立点或异常数据,是不可以随便以删除方式进行处理的。很可能孤立点的数据正是实验要找出的异常数据。因此,对于孤立点应先进入数据库,而不进行任何处理。当然,如果结合专业知识分析,确信无用则可进行删除处理。 2)错误数据。对有些带有错误的数据元组,结合数据所反映的实际问题进行分析进行更改或删除或忽略。同时也可以结合模糊数学的隶属函数寻找约束函数,根据前一段历史趋势数据对当前数据进行修正。 3)缺失数据。①若数据属于时间局部性的缺失,则可采用近阶段数据的线性插值法进行补缺;若时间段较长,则应该采用该时间段的历史数据恢复丢失数据。

5、若属于数据的空间缺损则用其周围数据点的信息来代替,且对相关数据作备注说明,以备查用。②使用一个全局常量或属性的平均值填充空缺值。③使用回归的方法或使用基于推导的贝叶斯方法或判定树等来对数据的部分属性进行修复④忽略元组。 4)冗余数据。包括属性冗余和属性数据的冗余。若通过因子分析或经验等方法确信部分属性的相关数据足以对信息进行挖掘和决策,可通过用相关数学方法找出具有最大影响属性因子的属性数据即可,其余属性则可删除。若某属性的部分数据足以反映该问题的信息,则其余的可删除。若经过分析,这部分冗余数据可能还有他用则先保留并作备注说明。 3 数据集成和数据融合 3.1数据集成 数据集成是一种将多

6、个数据源中的数据(数据库、数据立方体或一般文件)结合起来存放到一个一致的数据存储(如数据仓库)中的一种技术和过程。 由于不同学科方面的数据集成涉及到不同的理论依据和规则,因此,数据集成可以说是数据预处理中比较困难的一个步骤。每个数据源的命名规则和要求都可能不一致,将多个数据源的数据抽取到一个数据仓库中为了保证实验结果的准确性必须要求所有数据的格式统一。实现格式统一的方法大致分为两类,一类是在各数据源中先进行修改,后统一抽取至数据仓库中;二是先抽取到数据仓库中,再进行统一修改。 3.2数据融合 本文所讲的融合仅限于数据层的数据融合,即把数据融合的思想引入到数据预处理的过程中,加入数据的智能

7、化合成,产生比单一信息源更准确、更完全、更可靠的数据进行估计和判断,然后存入到数据仓库或数据挖掘模块中。如:用主成分分析法将多个指标数据融合成一个新的指标,实验时只拿融合后的新指标进行计算即可,一个新指标包含了原始多个指标的信息,既节省了存储空间,又提升了计算速度。 4 数据变换 数据变换是采用线性或非线性的数学变换方法将多维数据压缩成较少维数的数据,消除它们在空间、属性、时间及精度等特征表现的差异。这类方法虽然对原始数据通常都是有损的,但其结果往往具有更大的实用性。 常用的规范化方法有最小—最大规范化、Z—score规范化(零—均值规范化)、小数定标规范化等。吴新玲等提出了一个通用的数

8、据变换维数消减模型,给出了应用主成分分析方法计算模型中的数据变换矩阵的方法,应用实例表明,通过数据变换可用相当少的变量来捕获原始数据的最大变化 [7]。具体采用哪种变换方法应根据涉及的相关数据的属性特点,根据研究目的可把定性问题定量化,也可把定量问题定性化进行数据的操作变换。 5 数据归约 数据经过去噪处理后,需根据相关要求对数据的属性进行相应处理。数据规约就是在减少数据存储空间的同时尽可能保证数据的完整性,获得比原始数据小得多的数据,并将数据以合乎要求的方式表示。如:利用数据仓库的降维技术将小颗粒数据整合成大颗粒数据,方便数据的使用,节省存储空间。 6 结语 在数据预处理的实际应用过程中,上述步骤有时并不是完全分开的。另外,应该针对具体所要研究的问题通过详细分析后再进行预处理方法的选择,整个预处理过程要尽量人机结合,尤其要注重和客户以及专家多多交流。预处理后,若挖掘结果显示和实际差异较大,在排除源数据的问题后则有必要需要考虑数据的二次预处理,以修正初次数据预处理中引入的误差或方法的不当,若二次挖掘结果仍然异常则需要另行斟酌。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服