ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:43.50KB ,
资源ID:5871687      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5871687.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(反比例函数的概念.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

反比例函数的概念.doc

1、 反比例函数 教学目标:(1)从现实情境和已有的知识经验出发,讨论两个变量之间的关系,加深对函数概念的理解. (2)经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(3)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.(4)在抽象反比例函数概念的过程,进一步渗透类比、归纳、对应、函数、转化等数学思想方法,发展学生的数学思维,同时进一步体验数学学习活动与人们生活的密切联系性. 学情分析:在前面的学习过程中,学生对函数的概念,函数所反映的是两个变量之间的关系的内涵有了一定的了解,在已经学习了正比例函数、一次函数后,又一次学习函数,根据变量间的不同变

2、化情况让学生们认识到了另一种函数反比例函数.学生对函数的意义的理解、数量变化规律的把握有一定的难度,特别是对抽象的表达式中的变量的取值理解不深.因此本节课的教学难点是:领会反比例函数的意义,理解反比例函数的概念.在反比例函数概念的形成过程中,应注重充分利用学生已有的生活经验与背景知识,创设丰富的现实情境,同时充分让学生自主学习与合作交流相结合,通过举例、说理、交流等形式,内化、升华、巩固其知识,让学生揭示规律,形成能力. 教学过程设计:一、创设情境,提出问题 活动1问题1 面积为12平方厘米的矩形,它的长y(cm)和宽x(cm)之间满足怎样的关系式? 问题2 运动员跑400米,则所用的时间t(

3、分钟)与平均速度v(米/分钟)之间的关系式如何表示?教学形式:学生独立思考完成问题设计意图 本着课程来源于生活的理念,符合学生最近发展区的认知规律,使学生感到亲切、自然,同时学生应用生活经验很容易能够解决这些问题. 因此最大限度地激发学生的学习兴趣,提高学生思考问题的主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣.让学生真正体会到生活处处皆数学,生活处处有函数。问题3思考下面几个问题:(1)每个表达式中有几个变量?(2)(学生通过观察会发现有两个变量)两个变量之间有联系吗?能具体说一说它们之间的联系吗?研究两个变量之间的关系我们通常用的是哪类数学模型?(函数)每个表达式中出现的两个变量是

4、函数关系吗? 设计意图 首先使学生进一步感受到函数是反映现实生活的一种有效模型,在原有函数知识的基础上,进一步深化对函数概念的理解,即明确两点:第一,明确自变量和因变量的关系,在某变化过程中,有两个变量x,y,如果看成y随x的变化而变化,那么x称为自变量,y称为因变量;如果看成x随y的变化而变化,那么y称为自变量,x称为因变量。第二,函数定义的核心是“一一对应”,即给定一个自变量x的值就有唯一确定的因变量y的值和它对应,以此引出课题.问题4 从这节课开始我们要研究的一类新的函数反比例函数(教师板书第一章反比例函数),请同学们回忆八年级上学期我们研究一次函数是从哪几个方面进行的?我们研究反比例函

5、数应该从哪些方面进行呢?(这一章中我们首先研究反比例函数的概念、其次研究它的图象和性质,最后研究它的应用,本节课我们先来研究反比例函数概念.) 设计意图:初中阶段我们研究任何一类函数的基本思想方法都是先研究概念,然后研究其图象和性质,最后利用函数来解决问题,上述两个问题看似简单,一方面起到了知识的导入的作用,另一面运用类比的思想向学生渗透了研究初等函数的基本方法,为今后研究其它函数给出了思维方向.二循序渐进,学习新知(一)增强感性认识活动2请同学们看下面两个实际问题:问题5 我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,你能写出I与R的关系式吗?问题6 某服装厂承揽

6、一项生产夏凉小衫1600件的任务,计划用t天完成,写出平均每天生产量w(件)与生产时间t(天)之间的函数表达式设计意图 再通过两个生活中的实际问题得出两个具体的反比例函数,其目的是丰富具体的反比例函数的实例,增强学生对反比例函数的感性认识,为下面归纳、抽象反比例函数的概念做好铺垫.(二)合作交流、抽象概念活动3问题7 请同学们观察黑板上这4个表达式有什么共同的特点?1引导学生归纳总结共同特点.每个表达式中都有2个变量(因变量随自变量变化而变化)1个常数;表达式右面是分式形式且常数在分子位置、分母位置只有一个自变量;常数为正数且自变量增加因变量随之减小.(因为都是由实际问题得出的表达式)设计意图

7、:学生通过观察、比较、归纳发现四个具体的反比例函数共同特点,顺理成章地从对反比例函数的感性认识上升到理性认识,也自然的运用从特殊到一般的思维方法抽象归纳概括出反比例函数概念。有效地突出重点,使学生领会了反比例函数的意义.2由特例抽象概括定义问题8 这些具有相同特征的函数是一类函数叫做反比例函数,你能根据上述分析的特点类比着正比例函数的定义给反比例函数下一个定义吗? 教师引导学生归纳总结(剖析概念)定义的双重性,即若y是x的反比例函数,则y=,反过来如果y、x满足:y=,则y是x的反比例函数.;等价形式:;(与正比例函数对比)三、即时训练、巩固新知(一)联系生活、深化概念问题9 反比例函数在生活

8、中的应用是非常广泛的,你还能举出反比例函数的其他实例吗?【选取学生所举实例中的某个进行说明:例如s、v、t三者之间的关系:当s一定时v是t的反比例函数;当v一定时s=vt s是t的正比例函数】设计意图:让学生进一步感受反比例函数是一类反映现实世界特定数量关系的数学模型.学生利用已有的生活经验与刚刚形成的对反比例函数的认识,通过举例、说理、交流达到内化、升华、巩固反比例函数的意义,感受反比例函数与正比例函数的区别与联系,理解反比例函数概念的目的,渗透函数建模的数学思想.(二)巩固新知 1. 判断下列函数中y是否为x的反比例函数,若是指出k的值;若不是,请说明理由. , , , . 2一个游泳池蓄水60立方米,设放完池中的水所需时间为y小时,而每小时放水量为x立方米,写出y与x之间的函数关系式,并指出y是x的什么函数?3. 一个直角三角形两直角边长分别为x和y,其面积为2,请写出y与x之间的函数关系式,并指出y是x的什么函数? 设计意图:突出反比例函数与现实世界的密切的联系,加深理解反比例函数是刻画现实世界的重要数学模型.一方面使学生感受现实世界反比例函数大量存在,另一方面体会用反比例函数的知识可以分析和解决实际问题,渗透数学函数建模的思想.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服