ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:559.01KB ,
资源ID:5871391      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5871391.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(抽象函数问题的“原型”解法.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

抽象函数问题的“原型”解法.doc

1、抽象函数问题的“原型”解法抽象函数问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。研究发现,由抽象函数结构、性质,联想已学过的基本函数,再由基本函数的相关结论,预测、猜想抽象函数可能有的相关结论,是使抽象函数问题获解的一种有效方法。所谓抽象函数,是指没有明确给出函数表达式,只给出它具有的某些特征或性质,并用一种符号表示的函数。由抽象函数构成的数学问题叫抽象函数问题,这类问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。研究抽象函数问题的解法,对教师的教学,学生深刻理解并牢固掌握函数的相关内容,学好大纲规定的基本函数知识显得尤为重要。抽象来源于具体。抽象函数是由特殊的、具体

2、的函数抽象而得到的。如有可抽象为。那么=就叫做抽象函数满足的“原型”(函数),分析抽象函数问题的解题过程及心理变化规律可知,一般均是由抽象函数的结构,联想到已学过的具有相同或相似结构的某类(基本)“原型”函数,并由“原型”函数的相关结论,预测、猜想抽象函数可能具有的某种性质使问题获解的,称这种解抽象函数问题的方法为“原型”解法。下面给出中学阶段常用的“原型”(函数)并举例说明“原型”解法。一、中学阶段常用抽象函数的“原型”(函数)1、(为常数)2、=(0且1)3、 (0且1)4、(为常数)5、或=(为常数) 6、=二、“原型”解法例析【例1】 设函数满足,且()=0,、R;求证:为周期函数,并

3、指出它的一个周期。分析与简证:由想:=2coscos原型:=,为周期函数且2为它的一个周期。猜测:为周期函数,2为它的一个周期令=+,= 则=0为周期函数且2是它的一个周期。【例2】 已知函数满足,若,试求(2005)。分析与略解:由想:(+)=原型:=为周期函数且周期为4=。猜测:为周期函数且周期为41=4=-(+4)=是以4为周期的周期函数又f(2)=2004=-f(2005)=-【例3】 已知函数对于任意实数、都有,且当0时,0,(-1)=-2,求函数在区间-2,1上的值域。分析与略解:由:想:(+)=+原型:(为常数)为奇函数。0时为减函数,0时为增函数。猜测:为奇函数且为R上的单调增

4、函数,且在2,1上有4,2设0 ()0=0,为R上的单调增函数。令=0,则(0)=0,令=,则()=为R上的奇函数。(-1)=- (1)=-2 (1)=2,(-2)=2(-1)=-4-42(x-2,1)故在-2,1上的值域为-4,2【例4】 已知函数对于一切实数、满足(0)0,且当0时,1(1)当0时,求的取值范围(2)判断在R上的单调性分析与略解:由:想:原型:=(0, 1),=10。当1时为单调增函数,且0时,1,0时,01;01时为单调减函数,且0时,1,0时,01。猜测: 为减函数,且当0时,01。(1)对于一切、R,且(0)0令=0,则(0)=1,现设0,则-0,f(-) 1又(0)

5、=(-)= =1 = 101(2)设,、R,则0,()1且1, f(x)在R上为单调减函数【例5】 已知函数定义域为(0,+)且单调递增,满足(4)=1,(1)证明:(1)=0;(2)求(16);(3)若+ (-3)1,求的范围;(4)试证()=(nN)分析与略解:由:想:(、R+)原型:(0,0)猜测:有(1)=0,(16)=2,(1)令=1,=4,则(4)=(14)=(1)+(4)(1)=0(2)(16)=(44)=(4)+(4)=2(3)+(3)=(3)1=(4)在(0,+)上单调递增 (3,4(4)【例6】 已知函数对于一切正实数、都有且1时,1,(2)=(1)求证:0;(2)求证:(

6、3)求证:在(0,+)上为单调减函数(4)若=9,试求的值。分析与简证:由,想:原型:(为常数(=)猜测:0,在(0,+)上为单调减函数,(1)对任意0,=)=0假设存在0,使=0,则对任意0=f(=0,这与已知矛盾故对任意0,均有0(2),0, (1)=1()=()=(1)=1 (3)、(0,+),且,则1,()1, 即在(0,+)上为单调减函数。(4)(2)=,()=9 (2)()=1(2)=1=f(1),而在(0,+)是单调减函数2=1 即=综上所述,由抽象函数问题的结构特征,联想已学过的具有相同或相似结构的基本(原型)函数,并由基本函数的相关结构,预测、猜想抽象函数可能具有的性质 “抽象具体抽象”的“原型”联想思维方式,可使抽象函数问题顺利获解,且进一步说明,学生学好大纲规定的几种基本函数相关知识的重要性。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服