ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:85.50KB ,
资源ID:5871343      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5871343.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(方程根与函数零点.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

方程根与函数零点.doc

1、方程的根与函数的零点教案孙朋飞方 正 县 第 一 中 学方程的根与函数的零点教学目标:1、知识与技能:(1)理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件。(2)培养学生的观察能力。(3)培养学生的抽象概括能力。2、过程与方法:通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。3、情感、态度与价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值。教学重点、难点:重点:零点的概念及存在性的判定。难点:零点的确定。教学过程:一、创设情景,揭示课题1、提出问题:一元二次方程 ax2+bx+c

2、=0 (a0)的根与二次函数y=ax2+bx+c(a0)的图象有什么关系?2先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)方程与函数方程与函数 方程与函数引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念,并推广到一般的一元二次方程和二次函数又怎样?二、 互动交流 研讨新知函数零点的概念:对于函数,把使成立的实数叫做函数的零点。即:方程有实数根函数的图象与轴有交点函数有零点。求函数的零点:1、(代数法)求方程的实数根2、(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。注意:引导学生仔细体会这

3、段文字,感悟其中的思想方法。二次函数的零点:二次函数1、,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。2、,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。3、,方程无实根,二次函数的图象与轴无交点,二次函数无零点。零点存在性的探索:观察二次函数的图象:1、在区间上有零点_;_,_。_0(或)。2、在区间上有零点_;_0(或)注:结合上一例子推断出函数零点存在性定理,断定函数在某给定区间上是否存在零点?引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系。三、巩固深化,发展思维1、学生在教师指导下完成下列例题例1、求函数f(x)=x2x 6的零点个数。问题:(1)你可以想到什么方法来判断函数零点个数?(2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?例2、求函数,并画出它的大致图象。注意:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识。P97页练习第二题的(1)、(2)小题四、归纳整理,整体认识1、请学生回顾本节课所学知识内容有哪些,所涉及到的主要数学思想又有哪些。2、在本节课的学习过程中,还有哪些不太明白的地方,请向老师提出。五、布置作业 P102页练习第二题的(3)、(4)小题。5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服