1、变压器摘要:变压器是变电所的主要设备,功能是实现电网电压的等级变换,基本工作原理是电磁感应。变配电所是实现电压等级变换和电能分配的场所。对供电电源进行电压等级变换,应对电能进行重新分配的场所称为变电所。建筑变电所是供配电系统的枢纽,供电电源由电网引到变电所,在变电所完成降压,电能分配等功能。关键词: 变电所;变压器;继电保护;1. 介绍要从远端发电厂送出电能,必须应用高压输电。因为最终的负荷,在一些点高电压必须降低。变压器能使电力系统各个部分运行在电压不同的等级。本文我们讨论的原则和电力变压器的应用。2. 双绕组变压器变压器的最简单形式包括两个磁通相互耦合的固定线圈。两个线圈之所以相互耦合,是
2、因为它们连接着共同的磁通。在电力应用中,使用层式铁芯变压器(本文中提到的)。变压器是高效率的,因为它没有旋转损失,因此在电压等级转换的过程中,能量损失比较少。典型的效率范围在92到99%,上限值适用于大功率变压器。从交流电源流入电流的一侧被称为变压器的一次侧绕组或者是原边。它在铁圈中建立了磁通,它的幅值和方向都会发生周期性的变化。磁通连接的第二个绕组被称为变压器的二次侧绕组或者是副边。磁通是变化的;因此依据楞次定律,电磁感应在二次侧产生了电压。变压器在原边接收电能的同时也在向副边所带的负荷输送电能。这就是变压器的作用。3. 变压器的工作原理当二次侧电路开路是,即使原边被施以正弦电压Vp,也是没
3、有能量转移的。外加电压在一次侧绕组中产生一个小电流I。这个空载电流有两项功能:(1)在铁芯中产生电磁通,该磁通在零和m之间做正弦变化,m是铁芯磁通的最大值;(2)它的一个分量说明了铁芯中的涡流和磁滞损耗。这两种相关的损耗被称为铁芯损耗。变压器空载电流I一般大约只有满载电流的2%5%。因为在空载时,原边绕组中的铁芯相当于一个很大的电抗,空载电流的相位大约将滞后于原边电压相位90。显然可见电流分量Im= I0sin0,被称做励磁电流,它在相位上滞后于原边电压VP 90。就是这个分量在铁芯中建立了磁通;因此磁通与Im同相。第二个分量Ie=I0sin0,与原边电压同相。这个电流分量向铁芯提供用于损耗的
4、电流。两个相量的分量和代表空载电流,即I0 = Im+ Ie应注意的是空载电流是畸变和非正弦形的。这种情况是非线性铁芯材料造成的。如果假定变压器中没有其他的电能损耗一次侧的感应电动势Ep和二次侧的感应电压Es可以表示出来。因为一次侧绕组中的磁通会通过二次绕组,依据法拉第电磁感应定律,二次侧绕组中将产生一个电动势E,即E=N/t。相同的磁通会通过原边自身,产生一个电动势Ep。正如前文中讨论到的,所产生的电压必定滞后于磁通90,因此,它于施加的电压有180的相位差。因为没有电流流过二次侧绕组,Es=Vs。一次侧空载电流很小,仅为满载电流的百分之几。因此原边电压很小,并且Vp的值近乎等于Ep。原边的
5、电压和它产生的磁通波形是正弦形的;因此产生电动势Ep和Es的值是做正弦变化的。产生电压的平均值如下Eavg = turns即是法拉第定律在瞬时时间里的应用。它遵循Eavg = N = 4fNm其中N是指线圈的匝数。从交流电原理可知,有效值是一个正弦波,其值为平均电压的1.11倍;因此E = 4.44fNm因为一次侧绕组和二次侧绕组的磁通相等,所以绕组中每匝的电压也相同。因此Ep = 4.44fNpm并且Es = 4.44fNsm其中Np和Es是一次侧绕组和二次侧绕组的匝数。一次侧和二次侧电压增长的比率称做变比。用字母a来表示这个比率,如下式a = = 假设变压器输出电能等于其输入电能这个假设适
6、用于高效率的变压器。实际上我们是考虑一台理想状态下的变压器;这意味着它没有任何损耗。因此Pm = Pout或者VpIp primary PF = VsIs secondary PF这里PF代表功率因素。在上面公式中一次侧和二次侧的功率因素是相等的;因此VpIp = VsIs从上式我们可以得知 = a它表明端电压比等于匝数比,换句话说,一次侧和二次侧电流比与匝数比成反比。匝数比可以衡量二次侧电压相对于一次恻电压是升高或者是降低。为了计算电压,我们需要更多数据。 终端电压的比率变化有些根据负载和它的功率因素。实际上, 变比从标识牌数据获得, 列出在满载情况下原边和副边电压。 当副边电压Vs相对于原
7、边电压减小时,这个变压器就叫做降压变压器。如果这个电压是升高的,它就是一个升压变压器。在一个降压变压器中传输变比a远大于1(a1.0),同样的,一个升压变压器的变比小于1(a1.0), while for a step-up transformer it is smaller than unity (a1.0). In the event that a=1, the transformer secondary voltage equals the primary voltage. This is a special type of transformer used in instances w
8、here electrical isolation is required between the primary and secondary circuit while maintaining the same voltage level. Therefore, this transformer is generally knows as an isolation transformer.As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and
9、secondary circuit. In section 4 it is shown how the primary winding current adjusts itself to the secondary load current when the transformer supplies a load.Looking into the transformer terminals from the source, an impedance is seen which by definition equals Vp / Ip. From = a , we have Vp = aVs a
10、nd Ip = Is/a.In terms of Vs and Is the ratio of Vp to Ip is = = But Vs / Is is the load impedance ZL thus we can say thatZm (primary) = a2ZLThis equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance having a magnitude that is a2 times
11、 its actual value. We say that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedance-matching applications.4. TRANSFORMERS UNDER LOADThe primary and secondary voltages shown have similar polarities, as indicated by the “dot-making”
12、convention. The dots near the upper ends of the windings have the same meaning as in circuit theory; the marked terminals have the same polarity. Thus when a load is connected to the secondary, the instantaneous load current is in the direction shown. In other words, the polarity markings signify th
13、at when positive current enters both windings at the marked terminals, the MMFs of the two windings add.In general, it will be found that the transformer reacts almost instantaneously to keep the resultant core flux essentially constant. Moreover, the core flux 0 drops very slightly between n o load
14、 and full load (about 1 to 3%), a necessary condition if Ep is to fall sufficiently to allow an increase in Ip.On the primary side, Ip is the current that flows in the primary to balance the demagnetizing effect of Is. Its MMF NpIp sets up a flux linking the primary only. Since the core flux 0 remai
15、ns constant. I0 must be the same current that energizes the transformer at no load. The primary current Ip is therefore the sum of the current Ip and I0.Because the no-load current is relatively small, it is correct to assume that the primary ampere-turns equal the secondary ampere-turns, since it i
16、s under this condition that the core flux is essentially constant. Thus we will assume that I0 is negligible, as it is only a small component of the full-load current.When a current flows in the secondary winding, the resulting MMF (NsIs) creates a separate flux, apart from the flux 0 produced by I0
17、, which links the secondary winding only. This flux does no link with the primary winding and is therefore not a mutual flux.In addition, the load current that flows through the primary winding creates a flux that links with the primary winding only; it is called the primary leakage flux. The second
18、ary- leakage flux gives rise to an induced voltage that is not counter balanced by an equivalent induced voltage in the primary. Similarly, the voltage induced in the primary is not counterbalanced in the secondary winding. Consequently, these two induced voltages behave like voltage drops, generall
19、y called leakage reactance voltage drops. Furthermore, each winding has some resistance, which produces a resistive voltage drop. When taken into account, these additional voltage drops would complete the equivalent circuit diagram of a practical transformer. Note that the magnetizing branch is show
20、n in this circuit, which for our purposes will be disregarded. This follows our earlier assumption that the no-load current is assumed negligible in our calculations. This is further justified in that it is rarely necessary to predict transformer performance to such accuracies. Since the voltage drops are all directly proportional to the load current, it means that at no-load conditions there will be no voltage drops in either winding.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100