ImageVerifierCode 换一换
你正在下载:

SNP和CNV.ppt

[预览]
格式:PPT , 页数:41 ,大小:555KB ,
资源ID:5865900      下载积分:12 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5865900.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(SNP和CNV.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

SNP和CNV.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,SNP,和,CNV,与人类表型的关系,1,什么是,SNP,?,SNP,(单核苷酸多态性):在不同个体的同一条染色体或同一位点的核苷酸序列中,绝大多数核苷酸序列一致,而只有一个碱基不同的现象。,SNP,是人类基因组,DNA,序列中最

2、常见的变异形式。并非所有的,SNP,都有临床意义,对疾病和药物治疗有重大影响的,SNP,,估计只占数以百万计,SNP,的很小一部分。从数以百万存在于整个基因组的,SNP,,到导致蛋白质氨基酸编码改变或基因表达调控改变的,SNP,,最后到导致蛋白质体外活力改变的,SNP,,,SNP,的数目都在迅速递减。,2,关联分析,联合,SNPs,和人类疾病表型的研究,可以提供对诊断、预测、新的治疗方案等的新的和更精确的遗传标记,从而对直接的临床应用有很大的潜能。,联合基因、基因变异和人类疾病表型的关联分析在识别那些涉及单个基因的、高渗透性、常染色体显性孟德尔遗传疾病的基因位点比较成功。但是,对于更经常出现的

3、复杂疾病成功率比较低,例如多因素疾病:心脏病、糖尿病、高血压和癌症等。,3,整个基因组的关联分析是基于,连锁不平衡(,LD,),的(描述了在两个,SNPs,的等位基因间的非随机关系),被作为确定与有一个遗传元素的人类慢性疾病相关的位点的一般的方法。,关联分析的主要限制因素是:在这些复杂表型中,涉及多个基因,每个基因有相对弱的作用,并且与其他基因和环境因子有较强的相互作用。,这个方法的不足是,存在一些不确定性因素。主要的是,不同种群间的人类基因组的,LD,的细节信息的缺乏。,当一个疾病的基因变异以一个低频发生的话,研究的种群大小就会使得结果不同。,4,候选路径方法,间接候选关联,基于,LD,的的

4、整个基因组关联研究是一种统计方法,这种方法没有对基因识别的先验假设。,候选基因关联研究涉及五个方面:,1,、适合不同类型信息的路径中候选基因的选择,2,、确定这些基因在控制种群中的单倍型结构,3,、在每个基因中代表全部一般的单倍型的标签,SNPs,集的选择,4,、表型和单倍型状态的关联测试,5,、通过功能检验确定真实的原因变异的真实的位置,5,尽管用标签,SNPs,的间接候选关联方法说明复杂疾病的遗传病因现在很可行,但是仍然存在一个主要的问题,它涉及到一个假设:位点有很小的等位异质性,复杂疾病的易感性是由于少数目的祖先,SNPs,在种群中高频发生(,1%,)。但是,对于在很多位点的大量的稀有变

5、异,这种策略是无效的,因为,没有一个单体型与复杂性状有很强的关联,大多数的变异的贡献比较小。,6,原因变异的精确定位将是一个重要的障碍,而且,对于不同民族、不同地理位置以及所研究群体的其他特征都可能影响不同,SNP,单体型的频率,并且标签,SNPs,也可能不同。,这就暗示单独使用,SNP,数据库研究表型和基因型关联的局限性。,7,候选路径方法,直接候选关联,直接关联研究被候选,SNP,分析所限制,在假定的功能变异和疾病风险间的关联被测试。,功能,SNPs,可以分为编码,SNPs,(,cSNPs,),它可以改变氨基酸,和调控,SNPs,,控制表达或基因的剪接。,1700,多个人类疾病基因的识别说

6、明大部分疾病是由于在编码蛋白质的改变,少于,1%,的变异在调控区发现,8,仅仅通过核苷酸序列评估,SNP,功能比较困难,尤其在,SNPs,没有改变一个氨基酸或没有破坏一个影响蛋白质功能或结构的模体的特征时。,另外,仅有一个小的,SNPs,的子集将对表型有小的影响,所以对候选疾病易感性关联研究的一个重要的挑战是定义与疾病功能牵连的变异。,9,用于发现,SNP,的预检方法,10,SSCP,单链构象多态性(,SSCP,)分析,是一种基于,DNA,构象差别来检测点突变的方法。相同长度的单链,DNA,,如果碱基序列不同,形成的构象就不同,这样就形成了单链构象多态性。,单链,DNA,片段呈复杂的空间折叠构

7、象,这种立体结构主要是由其内部碱基配对等分子内相互作用力来维持的,当有一个碱基发生改变时,会或多或少地影响其空间构象,使构象发生改变,空间构象有差异的单链,DNA,分子在聚丙烯酰胺凝胶中受排阻大小不同,.,因此,通过非变性聚丙烯酰胺凝胶电泳,可以非常敏锐地将构象上有差异的分子分离开。,11,尽管,SSCP,是最流行和广泛应用的方法之一,但它的缺点是要求在多于一个电泳条件下检测所有可能构象变化,并且灵敏度是,60%95%,,依赖于基因和片段大小,对大于,250bp,的片段是无效的。,只能作为一种突变检测方法,要最后确定突变的位置和类型,还需进一步测序,当某些位置的点突变对单链,DNA,分子立体构

8、象的改变不起作用或作用很小 时,再加上其他条件的影响,使聚丙烯酰胺凝胶电泳无法分辨造成漏检,.,12,CFLP,裂解片段长度多态性(,CFLP,)原理与,SSCP,一样,但它不是依赖于二级结构中,SNP,的不同,而是发卡结构被核酸内切酶在连接单链和双链部分的,5,端切开。,裂解产物说明了在一个凝胶上带的序列特异性模式,可以通过在一个或多个带上的信号强度的出现、不出现、增加或减少来区分;这些模式反映了序列位置的不同,13,优点:与,SSCP,相比,,CFLP,更快、更精确并且可以分析大的,DNA,片段,缺点:产生片段模式、检验时间和温度都需要对每种类型的,DNA,片段进行优化,14,CSGE,也

9、是利用,DNA,二级结构。它是基于同双聚体和异双聚体在构象上的不同。异双聚体是在加热变性,很多种类型和变异的,DNA,分子的混合物种退火中得到的。,15,DHPLC,变性高效液相色谱分析(,DHPLC,):,在部分变性的条件下,通过杂合与纯合二倍体在柱中保留时间的差异,发现,DNA,突变。异源双链,DNA,与同源双链,DNA,的解链特性不同,在部分变性条件下,异源双链因有错配区的存在而更易变性,在色谱柱中的保留时间短于同源双链,故先被洗脱下来,在色谱图中表现为双峰或多峰的洗脱曲线。,16,DGGE,变性梯度凝胶电泳法(,DGGE,)依据首要的一点是:,DNA,双链末端一旦解链,其在凝胶中的电泳

10、速度将会极剧下降。第二个根据是,如果某一区域首先解链,而与其仅有一个碱基之差的另一条链就会有不同的解链温度,因此,将样品加入含有变性剂梯度的凝胶进行电 泳就可将二者分开。,17,通过三方面提高灵敏度:,1,、,“,GC,夹板,”,(,clamp,)技术,它是将一段长度为,30-50,碱基,富含,GC,的,DNA,附加到双链的一端以形成一个人工高温解链区。这样,片段的其他部分就处在低温解链区从而可以对其进分析。,2,、一个计算机程序可以模拟任何已知序列,DNA,解链温度有关的解链行为。以碱基序列为基础,程序可以给出解链图象。,3,、应用异源双链技术,18,TDGS,TDGS,是,DGGE,的衍生

11、技术,是一个关于解链温度和片段大小的二维形式分析,可以对不同,DNA,片段同时检测,降低了成本。,19,什么是,CNV,CNV,(拷贝数变异):指在人类基因组中广泛存在的,从,1000bp,到数百万,bp,范围内的缺失、插入、重复和复杂多位点的变异。,注:,1,、都是与基因组参考序列相比;,2,、,SNPs,和,CNVs,是人类表型变异的两个重要潜在来源。,20,CNVs,与表型相关的根据,CNPs,(拷贝数多态性)与一些复杂疾病表型有关,包括,HIV,的感染和发展、狼疮性肾炎和三个系统自身免疫性疾病:系统性红斑狼疮、显微镜下多血管炎和,韦格纳肉芽肿病。,最近的一个研究发现,,SNP,基因型和

12、CNV,测量与基因表达性状各有,83%,和,18%,的统计显著相关。但这低估了,CNVs,的作用,因此,更大完备性和精确性的检测技术需要被提出。,21,评估,CNVs,在疾病中作用的技术问题,发现,DNA,变异和表型的关系被测量每个个体中,DNA,变异的敏感度和精确度所限制。,并且数据不足使得当前,CNVs,发现技术的发现比率远比,SNP,要低。,目前报道的,CNV,位置是包含,CNV,的一个区域的位置,可以有很多可能的变异,精确的变异的位置或基因没有很好的测量。,22,CNVs,的关联研究和发现研究,大部分,CNV,研究是发现研究而不是关联研究(评估基因型和表型的关系)。,发现研究是基于在

13、这个位点没有变异的空假设,然后,评估变异的证据是否超过基因组的一个显著性阈值。有较高的假阴性和较低的假阳性。,一个关联研究是基于变异没有关联到表型的空假设。,23,24,整合,SNPs,和,CNVs,的关联研究,对,SNPs,的关联研究目前研究的比较多,因此这类研究将是,CNP,疾病关联研究的可能的资源。许多,CNVs,位于基因结构变异的复杂区域,一些,CNVs,与邻近,SNPs,存在着连锁不平衡,可通过检验,SNPs,基因型推测邻近的,CNVs,。,McCarroll,等猜想拷贝数缺失变异会以,3,种形式的“足迹,(Footprints)”,表现在,SNPs,数据上,:(1),特定个体携带的

14、无效基因型,;(2),邻近区域,SNP,等位基因频率背离,Hardy-Weinberg,平衡原理预期估计值,;(3)SNPs,基因型运算结果不符合孟德尔遗传模式。,25,但是,一些因素限制了利用,SNP,阵列分析,CNP,。,1,、一些,CNVs,独立分布于基因组内不能直接通过探测,SNPs,而得到,这样有些包含一般的,CNP,的遗传区域可能会被部分或完全的过滤掉;,2,、因为,SNP,阵列对于等位基因的检测是最优的而不是拷贝数测量,因此,它提供的拷贝数测量是有噪音的,结果是只有很大的变异才能检测到。,26,理想的是,每个,DNA,样本能用一个整合的分析同时检测,SNPs,和,CNVs,。提出

15、了一个双杂交寡核苷酸阵列,包含,SNP,等位基因检测探针和专用的拷贝数探针。这种双杂交阵列为整合,SNP,和,CNV,的关联研究提供可能。,27,CNVs,全基因组扫描的方法,常用的技术平台有基于大插入片段的比较基因组杂交,(CGH),、代表性寡核苷酸微阵列分析,(ROMA),、基于长的等温寡核苷酸探针的比较基因组杂交和,SNP,芯片等。,28,然而即使如此,当前的各种,CNV,全基因组扫描技术平台仍然具有一定的局限性,比如对于更小的,CNVs,检出效力有限,(20 kb),,位于扩增富集区,(,通常是产生新突变的热点,),或人类基因组中某些“新”的区域内的,CNVs,难以检测到等。,29,C

16、NV,分析软件和算法,目前已经发展了多种在全基因组水平推算,CNVs,的软件包和算法模型。其中比较常用的算法是隐马可夫模型,(Hidden Markov Model,,,HMM),、环状二元分割,(Circular binary segmentation,CBS),、等级分割,(Segmentation algorithm),、核平滑算法,(Kernel Smoothing algorithm),等。但是,无论哪种方法都具有一定的假阳性和假阴性率。,30,事实上,由于不同的样本、不同的算法、使用不同的参考样本组,而且,CNVs,判别标准也不尽相同,造成不同研究之间重合的,CNVs,仅介于,25

17、45%,之间。既使同样的研究样本,用不同算法得到的,CNVs,重合率也只有,72%,。这提示不同类型算法,/,软件之间可能具有一定互补性。,31,利用父母,-,子女三人同胞对,(Trios),样本分析时发现,子女中绝大多数的,CNVs,遗传自父母,这些位点称为遗传性,CNVs(inherited CNVs),,而新发生的与父母染色体同源序列重合率,50%,的,CNV,,称为新的,CNV,或新的拷贝数突变,(De novo CNVs,,,or De novo CN mutations),。,遗传性,CNVs,通常是某些疾病具有家族聚集性的遗传学基础,而新的拷贝数突变可能导致某些散发性疾病的发

18、生。,32,CNV,全基因组关联分析的流程,33,通过,CNV,全基因组关联分析评价新的拷贝数突变在散发性疾病中的作用,目前的,CNV,全基因组关联分析主要集中在散发性疾病与新的拷贝数突变方面。,传统认为,遗传性疾病通常是指遗传性状与改变蛋白质结构、功能或调节的突变碱基以孟德尔遗传方式分离。然而,临床遗传学家发现,至少有,97%,的疾病是散发的,而且不涉及任何基因的突变,仅仅源于,CNVs,。,34,那么散发性疾病的分子基础是什么呢?,目前认为它通常是由一个染色体异常或隐性性状或新的显性突变引起的。因此对于大部分散发性疾病病例来说,(,甚至可能包括遗传性疾病,),,新的拷贝数突变可能是一个主要

19、的遗传性机制。也有可能部分散发性疾病源于分布于相同或不同位点的两个不同,(,父母,),来源的,CNVs,组合,而仅携带其中之一的个体不会发病。,35,36,遗传性,CNVs,的全基因组关联分析,目前,鉴定到疾病易感性相关的遗传性,CNVs,位点的全基因组关联分析报道较少,这主要是因为遗传性,CNVs,的鉴定比起新的拷贝数突变,还面临着很多困难:,1,、现有技术鉴定到的遗传性,CNVs,通常较短,很少超过,100 kb,,不如新的拷贝数突变那样容易被发现,而且涉及基因较少,结果难以解释。,2,、,CNPs,以一定频率分离,然而约,10%,的多等位位点由于在人群中存在比较复杂的分离和遗传方式,所以

20、很难简单地使用“缺失”或“扩增”来描述。,37,3,、新的拷贝数突变的鉴定只能基于以家系为基础的研究样本,(trios,或父母,-,子女对,),,而遗传性,CNVs,的鉴定常使用无关病例,-,对照样本,因此后者可能会受人群分层等因素的干扰。,4,、新的拷贝数突变往往都是患者和对照之间的明显差异,也就是说这样的位点对于特定的疾病有较高甚至是完全的外显率,而遗传性,CNVs,可能只有中等水平的外显率,导致难以通过全基因组关联分析鉴定出来。,38,尽管如此,目前仍然有一些遗传性,CNVs,全基因组关联分析的报道:,Yang,等用,Affymetrix 500K,芯片分析了,350,名骨质疏松症患者和

21、350,名对照,鉴定到,74,个,CNPs,区域,其中,4q13.2,处的缺失型位点与疾病紧密相关精细定位发现其中的,UGT2B17,基因存在明显的缺失现象。,39,在定位遗传性,CNVs,累及的可能易感基因时,通常有两种方式:,1,、如果该,CNVs,本身累及了编码基因,通常通过功能候选的方式找到可能在疾病发生发展过程中有重要作用的基因。,2,、如果,CNVs,本身位于非编码序列,通常利用其与,SNP,位点或染色体区段的连锁不平衡来找到相应的致病基因。,遗传性,CNVs,,尤其是罕见的遗传性,CNVs,与疾病易感性的关系,可能是未来,CNV,全基因组关联分析的新的研究热点。,40,展望,现有的,CNV,全基因组关联分析初步展示,CNV,在复杂疾病易感性中的重要作用。相信随着高通量全基因组,CNVs,扫描平台和新的统计推算方法的不断发展,基于,CNVs,这一新的遗传易感标志的,GWAS,将和基于,SNPs,及其单体型的传统,GWAS,一样,成为研究疾病遗传易感性的有力工具。,联合使用,SNPs,和,CNVs,这两个具有互补性的遗传标志,将为深入理解复杂疾病的分子机制和鉴定易感基因,对遗传变异和疾病表型关系的认识具有重要意义。,41,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服