ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:214.96KB ,
资源ID:5857199      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5857199.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(新编物理基础学上册第4章课后习题(每题都有)详细答案.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新编物理基础学上册第4章课后习题(每题都有)详细答案.doc

1、第四章 4-1 观察者A测得与他相对静止的Oxy平面上一个圆的面积是12 cm2,另一观察者B相对于A以 0.8 c (c为真空中光速)平行于Oxy平面作匀速直线运动,B测得这一图形为一椭圆,其面积是多少? 分析:本题考察的是长度收缩效应。 解:由于B相对于A以匀速运动,因此B观测此图形时与v平行方向上的线度将收缩为,即是椭圆的短轴. 而与v垂直方向上的线度不变,仍为,即是椭圆的长轴. 所以测得的面积为(椭圆形面积) =7.2cm2 4-2 长度为1m的米尺L静止于中,与轴的夹角系相对系沿轴运动,在系中观

2、察得到的米尺与轴的夹角为,试求:(1)系相对系的速度是多少?(2)系中测得的米尺的长度? 分析:本题考察的是长度收缩效应。根据两个参考系下米尺的不同长度再结合长度收缩效应我们可以很方便的得到两个参考系之间的相对速度 解:(1)米尺相对系静止,它在轴的投影分别为: 米尺相对S系沿x方向运动,设运动速度为v,为S系中的观察者,米尺在x方向将产生长度收缩,而y方向的长度不变,即 故米尺与x轴的夹角满足 将与、的值代入可得: (2)在S系中测得米尺的长度为: 4-3 已知介子在其静止系中的半衰期为。今有一束介子以的速度离开加速器,试问,从实验室参考系看来,当介子

3、衰变一半时飞越了多长的距离? 分析:本题考察的是时间膨胀效应。根据静止系中的半衰期加上时间膨胀效应我们可以求出在实验室参考系中的半衰期,然后根据该半衰期求出飞行距离。 解:在介子的静止系中,半衰期是本征时间。由时间膨胀效应,实验室参系中的观察者测得的同一过程所经历的时间为: 因而飞行距离为: 4-4 在某惯性系K中,两事件发生在同一地点而时间相隔为。已知在另一惯性系中,该两事件的时间间隔为,试问它们的空间间隔是多少? 分析:本题考察的是时间膨胀效应以及洛伦兹变换。根据时间膨胀效应我们可以求出两参考系的相对速度,继而根据洛伦兹变换演化出空间间隔变换的公式求出该两事件在S系中的

4、空间间隔。 解:在k系中,为本征时间,在系中的时间间隔为 两者的关系为: 故两惯性系的相对速度为: 由洛伦兹变换,系中两事件的空间间隔为: 两件事在K系中发生在同一地点,因此有,故 4-5 惯性系相对另一惯性系沿x轴作匀速运动,取两坐标原点重合的时刻作为计时起点。在系中测得两事件的时空坐标分别为以及,已知在系中测得该两事件同时发生。试问:(1)系相对系的速度是多少?(2)系中测得的两事件的空间间隔是多少? 分析:本题所考察的是洛伦兹变换的应用问题。根据洛伦兹变换在不同参考系下两个事件的时间变换关系,我们可以很方便的得到两个参考系之间的相对速度。有了相对速度以后

5、再根据洛伦兹变换的空间变换关系,我们可以得到两事件的空间间隔。 解:(1)设系相对S系的速度为v,由洛伦兹变换,系中测得两事件的时间为: 由题意, 因此有 其中负号表示系沿系的方向运动。 (2)由洛伦兹变换,系中测得的两事件的空间位置为: 故空间间隔为: 4-6 (1)火箭A和B分别以的速度相对于地球向方向飞行,试求由火箭B测得的A的速度。(2)若火箭A相对地球以0.8c的速度向方向运动,火箭B的速度不变,试问A相对B的速度是多少? 分析:本题考察的是洛伦兹速度变换。在火箭B为静止的参考系中,先求出地面参考系相对此参考系的运动速度(此即为两个参考系之

6、间的相对速度),然后由火箭A相对地面的运动速度以及洛伦兹速度变换公式求出火箭A相对火箭B的速度。 解:(1)设火箭B的静止系为S,则地面参考系相对S的运动速度为。在地面参考系中,火箭A的运动速度为,由洛伦兹速度变换公式可得火箭A相对火箭B的运动速度为: (2)由于S系相对地面参考系以方向飞行,而在地面参考系中火箭A的运动速度为。则根据洛伦兹速度变换公式在S系中火箭A的运动速度为: 所以火箭A相对火箭B的速度为: 4-7 静止在系中的观察者测得一光子沿与x 轴成60°角的方向飞行,另一观察者静止于系中,系相对系为的速度沿x轴方向运动,试问系中的观察者测得的光子运动方向是怎样

7、的? 分析:本题考察的是洛伦兹速度变换。根据两个参考系的相对速度以及光子在K系的速度,由洛伦速度变换可以求出光子在S系中的运动速度。 解:已知系相对K系的速度为,光子速度为c,在K系中的运动方向为与x轴成60°角,因此该光子在K系中的速度为。所以在系中光子的运动速度为: 令该光子在系中的运动方向与X轴成角,则有: 4-8 子的静止质量是电子静止质量的207倍,静止时的平均寿命,若它在实验室参考系中的平均寿命,试问其质量是电子静止质量的多少倍? 分析:本题考察的是时间膨胀效应和相对论质量问题。根据时间膨胀效应我们可以求出该粒子在实验室参考系中的运动速度,然后根据该速度可以

8、求出速度下的相对论质量。 解:设子在实验室参考系中的速度为、质量为,依题意有: 将的值代入得: 当子速度为时其质量为: 4-9 一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之多少? 分析:本题涉及的是相对论质量和长度以收缩问题。根据质量与静止质量之比可以求出该物体的运动速度,然后根据速度可以求出该物体在运动速度方向上的长度收缩。 解:设物体速度为、质量为、长度为,静止质量和长度分别为和,依题意有: 因此,根据长度收缩效应有: 所以在运动方向上缩短了: 4-10 一电子在电场中从静止开始加速,试问它应通过多大的电位差才能使其质量

9、增加0.4%?此时电子速度是多少?(电子的静能为0.511MeV.) 分析:此题考察的是相对论质量与速度之间的关系。根据相对论质量公式可以很方便的求出电子的运动速度,再根据能量守恒,求出加速所需的电位差。 解:设电子速度为、质量为,静止质量为,所加的电位差为U。依题意有: 所以此时电子的速度为: 根据能量守恒,有: 4-11 已知一粒子的动能等于其静止能量的n倍,试求该粒子的速率。 分析:该题考察的是相对论的质能关系式。根据粒子的动能和静能比可以求出该粒子总能量和静能之比,这个比值也就是该粒子的质量与静止质量之比,根据相对论质量与速度的关系式,我们可以求出该粒子的

10、速率,从而求出该粒子的动量。 解:依题意有: 所以其质量与静止质量之比为: 根据相对论质量与速度的关系有: 所以该粒子的速度为: 4-12 一静止的粒子(质量为),裂变成两个粒子,速度分别为。求裂变过程的静质量亏损和释放出的能量。 分析:该题涉及到质量亏损的概念和动量守恒定律。由于反应后的两个粒子的质量未知,因此我们可以根据两个粒子之间的速度关系推导出二者的质量比,又由于该两个粒子的总动能来源于该反应的静质量亏损,因此结合反应后两个粒子的质量比以及各自的速度大小,我们可以求出该反应的质量亏损,从而求出该反应所释放的能量。 解:设反应后两粒子的质量分别为、,则根据动量

11、守恒定律有: (1) 反应前后总的能量守恒,所以有: (2) 将(1)式代入(2)式,得: 所以反应前后的静质量亏损为: 释放出的能量为: 4-13 试求静止质量为的质点在恒力F作用下的运动速度和位移。在时间很短()和时间很长()的两种极限情况下,速度和位移值又各是多少? 分析:根据力和动量的关系,经过积分后我们可以求解在恒力作用下的力与速度之间的关系,经过再次积分,可以得到位移和力的关系。 解:由于力代表的是动量的变化率,因此有: 将上式积分,由于力为恒力与时间无关,再代入初始条件(起始时为静止,即初速度为零)可得: 因此可得速度与力之间的

12、关系式: 将上式再积分,并假定起始时所处位置为坐标原点,可得位移与力之间的关系: 当时,有: 当时,有: 4-14 在原子核聚变中,两个原子结合而产生原子。试求:(1)该反应中的质量亏损为多少?(2)在这一反应中释放的能量是多少?(3)这种反应每秒必须发生多少次才能产生1W的功率?已知原子的静止质量为原子的静止质量为。 分析:已知反应前后各种反应物和生成物的质量,我们可以很方便的求出反应前后的质量亏损,并据此求出反应所释放的能量。 解:反应的质量亏损为: 该反应所释放的能量为: 要达到1W的功率需要每秒钟反应的次数为: 4-15 当一个粒子所具有的

13、动能恰好等于它的静能时,试问这个粒子的速度有多大?当动能为其静能的400倍时,速度有多大? 分析:粒子的总能量可以用粒子的动质量与光速的平方的乘积来表示,而粒子的静能则等于粒子的静质量与光速的平方的乘积,因上我们可以很方便的把粒子的动能和静能之比用粒子的速度表示出来。 解:根据粒子的质量和速度之间的关系可得: 所以粒子的总能与静能之比为: 又该粒子的总能等于动能与静能之和,所以该粒子的动能与静能之比为: 所以当动能等于静能时,有: 当动能等于静能的400倍时,有: 4-16同位素核由两个质子和一个中子组成,它的静质量为。(1)以为单位,的静能为多少?(

14、2)取出一个质子使成为(静质量为)加一个质子(静质量为),试问需要多少能量? 分析:本题涉及的是静能以及质量亏损的概念。粒子的静能由粒子的静质量与光速的平方的乘积表示;而反应前后总能量守恒的要求指明反应进行需要的能量由反应前后的质量亏损所决定。 解:静能为: 当从同位素氦核中取出一个质子时,此时质量亏损为: 所以反应需要能量为: 4-17 把一个静止质量为的粒子由静止加速到0.1c所需的功是多少?由速率0.89c加速到0.99c所需的功又是多少? 分析:此题涉及到的是粒子的总能量与速度之间的关系。根据能量守恒定律,通过计算任一速度下的总能量即可求出从该速度下再增加0.

15、1c的速度所需要做的功。 解:粒子的静能量为: 速度为0.1c时,该粒子的总能量为: 因此将粒子由静止加速到0.1c所需要做的功为: 同理粒子在速度为0.89c和0.99c时的总能量分别为: 所以将粒子由0.89c加事到0.99c时所需做的功为 4-18 两个静止质量都是的小球,其中,一个静止,另一个以运动,在它们做对心碰撞后粘在一起,求碰后合成小球的静止质量。 分析:由于碰撞前后,体系的总能量不变,所以可以得出碰后合成小球的动质量与的关系;再根据碰撞前后动量守恒,加上已求出的合成小球的动质量,可以求出合成小球的速度;最后根据合成小球的速度和相应的动质量可以求出合成小球的静质量。 解:设碰撞前运动小球的质量为,碰撞后合成小球的质量和速度分别为M和u,根据题意,显然有: (1) 由能量守恒,有: (2) 碰撞前后动量守恒, (3) 由(1)、(2)和(3)式可得: 所以合成小球的静质量为:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服