1、陕西永陇能源开发建设有限责任公司崔木煤矿副立井井筒施工组织设计 中煤三建2008年12月10日目 录第一章 工程概况2-11第二章 施工准备与场地布置12-13第三章 施工方案及凿井主要辅助系统14-24第四章 施工工艺25-34第五章 施工组织管理、劳动组织与工期安排35-39第六章 质量保证体系和工程施工检测、监控40-47第七章 安全保证措施48-58第八章 环境保护与文明施工59-61第九章 附件62-791.副井工广总平面布置图2.矿建主要施工设备表3.凿井设备平面布置图4.地面稳绞布置平面图5.立井上下监控平面布置示意图6.主要供电设备表7.高压供电系统图8.低压供电系统图9.施工
2、进度计划网络图10.钢丝绳选型参数表11.钢丝绳选择计算书第一章 工程概况1.1工程简介崔木井田资源量/储量424.43Mt,可采储量260.82Mt。崔木煤矿设计生产能力4Mt/a,其中一期生产能力4Mt/a,矿井服务年限约74a。根据井田地面地形条件和煤层赋存条件,设计选择立井开拓。1.2施工条件1.2.1地理位置及交通运输条件崔木井田位于永陇矿区东端的北湾太阳寺勘查区。属麟游县崔木镇所辖。井田东西宽8.35km,南北长10.65km,面积88.74km2。井田内有彬县麟游(崔木)市际公路及崔木甘肃邵寨省际公路从勘查区中部通过。S306省道由崔木向西经麟游、良舍、凤翔至陈仓与陇海铁路相接,
3、至宝鸡120km,至宝鸡二电厂(长青工业园)100km。向东24km至永坪与312国道相接,南至西安155km,交通较为便利。1.2.2地形地貌及气候条件井田属陇东黄土高原南缘梁塬沟壑区,主要是黄土塬梁和沟壑两种。总体地势呈南高北低之势。区内最高处是勘查区东南西庙头一带,高程达1497.7m;最低处是西北部的合阳沟谷,高程1125m;相对高差372.7m。本区属暖温带半干旱大陆性季风气候区。年平均气温为11.1,极端最高气温为38,极端最低气温为-22.5。霜期一般为10月中旬至来年4月中、下旬;冰冻期一般在12月上旬至来年2月下旬;冻土层最大厚度40cm。年平均降雨量为325mm,蒸发量大于
4、900mm;每年35月份为西北季风期,最大风速12.7m/s。本区属泾河水系,自东而西主要有徐家河与合阳沟河。泾河年平均流量57.60m3/s,枯水期最小流量1m3/s,洪水期最大流量15700 m3/s,其支流呈树枝状分布,常年流水,但流量较小。徐家河是水帘河上游,平均流量0.0803m3/s;合阳沟河是普化河一支流,平均流量0.1836m3/s,为沟间溪流。1.2.3施工用电在施工现场附近,发包方为承包方提供10KV电源。承包方自己接线,发包方按表计量,按0.6元/千瓦时收费。1.2.4施工用水发包方在施工场地范围内某一定点集中提供水源,发包方按表计量,按1元/m3价格收费。1.2.5进场
5、道路发包方组织队伍同步修建。临时道路直接到井口。1.2.6工程地质 区域地层及构造根据地表和钻孔揭露情况,井田内沉积地层由老到新依次有三叠系中统铜川组、侏罗系、三叠系、上第三系、第四系。延安组为本区含煤地层。岩性为灰深灰色泥岩、砂质泥岩、粉细砂岩与灰白色中粗粒砂岩互层,中夹炭质泥岩及煤层。厚度0104.59m,平均47.73m左右,与下伏富县组呈平行不整合接触,或超覆于三叠系之上。含煤地层综合柱状图见图1-1。本区位于太峪背斜以南、遥远背斜以北含煤凹陷区。3煤底板构造总体为一东南高西北低的单斜构造,呈EW向展布,东部3煤层底板最大高程937.39m,西部3煤层底板最低高程682.64m,平均每
6、公里下降29m。遥远背斜东起永寿县底角沟、平遥煤矿北。轴部为三叠系,向西延伸与阁头寺背斜相接,轴部为延安组。勘查区为其北翼,最大倾角10。太峪背斜东起彬县太峪镇,轴部位为三叠系,为一宽缓箱状背斜,轴向东西,经底店、太阳寺进入勘查区,至大湾(P55孔)倾没,进而向西延伸与麟北春台塬阳坡背斜相接,轴部变窄,不连续,呈一列长垣构造。区内未发现断裂构造。井田内未见有岩浆岩侵入现象。1.2.7水文地质1.2.7.1含水层、隔水层及其与矿床充水的关系A、含水层、隔水层 第四系全新统(Q4)冲洪积砂砾石孔隙含水层主要分布在天堂河、庵川河及常村河等河谷冲积阶地及河床区,由河流相冲、洪积物组成,具二元结构。直接
7、受大气降水及地表水补给,渗透性强,水量充沛,水质良好。 第四系中上更新统(Q2+3)黄土及砾石孔隙裂隙含水层图1-1 含煤地层综合柱状图分布较为广泛,谷地山坡均可见到,厚度因地而异,最大可达150m,底部有一变化较大的砂砾石层,为孔隙裂隙含水层。主要以大气降水补给,局部地段还可获得河水补给,故含水性强度不均,泉流量相差悬殊,小者仅0.005l/s,大者可达0.2l/s。 上第三系(N)粘土隔水层与砂砾石含水层多分布于梁峁脊部和山顶上,厚度因地而异,岩性主要为浅棕红色亚粘土、砂质粘土,隔水性能良好。局部地段底部有厚为11.5m的砂砾石层,含孔隙潜水,泉流量一般为0.010.30l/s,最大1.0
8、0 l/s。水质为HCO3CaMg与HCO3CaNa型,矿化度0.280g/l。 下白垩统罗汉洞组(Kllh)砂岩裂隙含水层仅分布于普化河陕甘交界处。岩性主要为桔红色粗粒砂岩、砾岩、砂砾岩、含砾粗砂岩夹砂质泥岩及泥岩薄层,泥质胶结,分选差,厚度44.0m。 下白垩统华池组(K1h)泥岩隔水层分布于天堂、丈八至常村河以北地区,出露不完整,最大厚度148m。岩性主要为紫杂色、灰绿色砂质泥岩及泥岩,中夹薄层粉砂岩、细粒砂岩,泥岩隔水性能良好。 下白垩统宜君洛河组(K1y+l)砂砾岩孔隙裂隙含水层在区内低山丘陵及各沟谷中广泛分布,厚度23.05362.00m。岩性为紫红色及暗棕色巨厚层状砾岩、巨砾岩夹
9、粗粒砂岩、砂砾岩薄层或透镜体,浅棕红色、棕灰色巨厚层状粗粒砂岩、含砾粒砂岩及少量砂质泥岩条带。成份多为长石、石英碎屑,泥砂质充填,其富水性及水力性质受地貌控制。钻孔抽水试验结果:单位涌水量0.008990.03512l/sm,渗透系数0.01460.1098m/d,水质类型HCO3-MgCaNa、HCO3-MgNa,矿化度0.5280.569g/l。泉流量为0.030.06l/s,水质为HCO3-MgCaNa、SO4HCO3-Ca型水,矿化度1.716g/l。 中侏罗统安定组(J2a)砂岩裂隙含水层出露于折灵沟及阁头寺北部支沟脑。厚度71.03154.81m,岩性为棕色、紫红色、灰绿色泥岩、砂
10、质泥岩夹中粗粒砂岩,泥岩及砂质泥岩隔水性能良好,砂岩含水微弱,为富水性极弱的含水层。 中侏罗统直罗组(J2z)砂岩裂隙含水层地表未见出露,钻孔揭露厚度6.6696.02m。岩性上部为灰绿色、暗棕红色、紫灰色泥岩、砂质泥岩、粉砂岩与中粗粒砂岩互层;下部为灰绿色中粗粒砂岩与砂质泥岩、粉砂岩互层,底部有一层巨厚层状黄绿色含砾粗砂岩。砂岩含水层裂隙不发育,储水条件不良,又被隔水层相阻,地下水补给条件亦差,故为富水性微弱的含水层。 中侏罗统延安组(J2y)砂岩裂隙含水层地表未见出露,钻孔揭露厚度0153.22m,是区内的含煤地层。岩性主要为灰深灰色泥岩、砂质泥岩、粉砂岩,灰灰白色中、细粒砂岩及含铝质泥岩
11、、炭质泥岩夹煤层。砂岩含有承压裂隙水,因补给条件差,故富水性微弱。钻孔抽水试验结果:单位涌水量0.0000460.001925l/sm,渗透系数0.000380.0064m/d。水质为高矿化度Cl-Na型水。 下侏罗统富县组(J1f)泥岩隔水层地表未见出露,仅在个别钻孔中钻遇该层,发育不稳定,地表仅在五曲湾、青渠窑等地有零星出露。厚度一般020m,钻孔揭露最大厚度为24.03m。岩性多为紫杂色花斑状含铝质泥岩,夹有角砾岩薄层,局部地段为褐灰色含钙质泥岩,是一良好的隔水层。 中三叠统铜川组(T2t)砂岩裂隙含水层地表未见出露,作为煤系地层之基底,一般钻孔揭露厚度在15 m以内。岩性上部为紫色泥岩
12、、浅紫色、灰绿色粉、细粒砂岩,灰白色细粒砂岩和中粒砂岩互层,中夹灰绿色中、粗粒砂岩,含煤线,为富水性微弱的砂岩裂隙含水层。B. 含(隔)水层水文地质特征 第四系全新统冲洪积层孔隙潜水含水层()呈条带状展布于合阳沟、任家沟及徐家河河谷中,厚08m。具典型的二元结构特征,上部以砂质粘土、粘土及粉砂为主,下部为含水的砂及砂卵砾石层。地下水水位埋深14m,含水层厚度34m。泉流量0.030.22l/s。水质类型HCO3-CaMg型,矿化度0.50g/l,水温13。 第四系中上更新统黄土孔隙裂隙潜水含水层()分布广泛,厚度因地而异,南部梁峁区510m,北部残塬区厚度大于150m。主要由黄土、砂黄土、古土
13、壤组成,底部有一层厚度变化较大的砂砾石层,属孔隙裂隙含水层。于沟谷地带普遍出露,泉流量0.0081.0l/s。川道区水位埋深一般小于12m,含水层厚0.53.0m;梁峁残塬区水位埋深1554m,一般2030m,含水层厚1.510m。水质类型HCO3-Ca,HCO3-CaMg,矿化度0.4430.659 l/g,水温1216。 上第三系粘土隔水层段()于梁峁残塬区广泛出露。厚度一般60m。上部为浅棕红色、棕红色粘土、亚粘土,致密,具团块状结构,并为Fe、Mn质所浸染,富含零散钙质结核,下部为棕红色粘土,钙质成份高,并含数层钙质结核层。总体而言,本层段岩性稳定,隔水性强,为勘查区松散岩类与基岩含水
14、层之间的稳定隔水层。 上第三系砂卵砾含水层段()断续分布于红土层底部,于沟谷中零星出露,一般厚度35m。岩性以浅棕色浅灰褐色半固结状中粗碎屑堆积物为主,形成弱的含水层。当底部有隔水层时,在沟谷中以泉的形式排泄于地表,泉流量0.0140.033l/s。 白垩系下统洛河砂岩孔隙裂隙含水层()零星出露于合阳沟、徐家河等较大河谷中广泛出露,厚度分布规律总体呈西北薄而东南厚。由各粒级砂岩、砂砾岩组成,以中粗粒砂岩为主要含水层段。泉流量0.041.00l/s,泉水水质类型HCO3-CaMg,矿化度0.561g/l,水温13。单位涌水量0.089150.08946L/s.m,渗透系数0.02660.0334
15、m/d,属富水性弱的含水层。 白垩系下统宜君组砾岩裂隙含水层()区内无出露,厚度不稳定。岩性为紫杂色块状砾岩,砾石成份以花岗岩、变质岩为主,砾径37cm。砾石多为浑圆状,砂泥质充填,钙、铁质胶结。单位涌水量0.0088l/sm,渗透系数0.020m/d,属富水性不均一的弱含水层。 侏罗系中统安定组泥岩隔水层()区内无出露。钻探揭露地层厚度28.65(P13-2)147.03m(X3-3)。岩性为棕色、紫红色、灰绿色泥岩、砂质泥岩夹中粗粒砂岩,底部有一层厚度较大的浅紫色砂砾岩。单位涌水量00.000076l/sm,说明其含水甚微。故视为煤系与上覆白垩系之间的稳定隔水层。 侏罗系中统直罗组砂岩裂隙
16、含水层()勘查区内无出露,钻探揭露地层厚度0(P13-2、P17-1、P17-2)43.77m(P1-1),含水层平均12.31m。岩性上部为灰绿色、暗红色、紫灰色泥岩、砂质泥岩、粉砂岩与中粗粒砂岩互层,下部为灰绿色中粗粒砂岩与砂质泥岩、粉砂岩互层,底部有一层巨厚层状黄绿色含砾粗砂岩。单位涌水量0.0026L/sm,渗透系数0.0164m/d,属富水性微弱的含水层。 侏罗系中统延安组煤层及其顶板砂岩含水层()勘查区内无出露,钻探揭露地层厚度0(P13-2、P17-1、P17-2、P9-2)107.54m(X1-3),含水层平均28.85m。含水层为3煤及其老顶中粗粒砂岩、砂砾岩。钻孔单位涌水量
17、0.00343L/sm,渗透系数0.00089m/d,属富水性极弱含水层。 侏罗系下统富县组泥岩隔水层()地表未见出露,发育不稳定,钻探揭露富县组厚度0(X1-1、X3-4、P1-2、P1-3、P9-1)67.25 m(P5-4),平均17.90m。岩性多为紫杂色花斑状含铝质泥岩,夹有角砾岩薄层,局部地段为褐灰色含钙质泥岩,隔水性能良好。 三叠系中统铜川组砂岩裂隙含水层()地表未见出露,钻孔最大厚度104.15( P17-1)m(未见底)。岩性上部为紫色泥岩,浅紫色粉细砂岩,灰白色细粒砂岩与中粒砂岩互层,中夹灰绿色中粗粒砂岩。据区域资料为富水性微弱的含水层。C. 地下水补给、迳流及排泄条件勘查
18、区各类地下水,因所处地形地貌、含水层岩性等水文地质条件差异,其补给、迳流及排泄条件明显有别。 松散层地下水河谷川道区松散层潜水,主要由大气降水和下伏基岩地下水补给,近河地段与河流地表水有互补关系,即洪水期河水补给地下水,枯水期地下水补给河水。黄土残塬、梁、峁地区,补给方式为大气降水的垂直渗入。塬区地形开阔平缓,黄土透水性能好,降水入渗补给量大;梁峁区地形破碎,坡降大,降水多由地表流失,渗入补给量甚微。地下水流向基本与地形坡向一致,即由分水岭地段流向沟谷,最终汇入河流。由于自然地理条件差异,地下水局部流向变化较大。塬边部沟谷发育,含水层被切穿而形成各塬块相对独立的水文地质单元,地下水流向除遵循总
19、的迳流趋势外,尚由塬中部向周边沟谷呈放射状流动。总体而言,由于地形破碎,地势高低悬殊,松散层地下水具有迳流途径短,水循环交替强烈,矿化作用弱的特点。除河漫滩及阶地区地下水以补给地表水的方式排泄外,塬梁峁区地下水,均以泉的形式排泄于沟谷为主要排泄途径。 白垩系砂砾岩地下水勘查区白垩系砂砾岩含水层,系区域性白垩系承压水盆地西南边缘组成部分,呈现为一开启型含水构造。地下水补给来源以区域侧向迳流为主,大气降水次之。地下水迳流方向受地质构造及地形地貌条件控制,具多向性。侵蚀基准面以上地下水,一般由地势较高的分水岭地带向沟谷方向运移,以泉的形式排泄。深层地下水受区域水动力场控制,总体呈由南西而北东缓慢运移
20、,向区外黑河、泾河排泄。 侏罗系砂岩及煤系地下水侏罗系砂岩及煤系裂隙水,受埋藏条件和地质构造控制。浅循环带以补给区与排泄区均在浅部为特征,补给区居地形较高的露头地带,排泄区居低凹地段,高处地段获得降水及地表水入渗补给,向低凹处运移,低凹处则以盈溢形式向外排泄。深循环带地下水则通过裂隙向深部运移,随埋深加大而迳流趋于滞缓。D. 水文地质勘查类型勘查区处于半干旱气候带,年降水量中等而相对集中,无较大的地面水体。除沟谷中基岩局部出露外,大部分地段为第四系黄土和上第三系红土所覆盖。地形地貌、水文气象等自然地理条件,与地层、构造等地质因素,有利于地表迳流形成,而不利于地下水的补给。含水层裂隙不甚发育,埋
21、藏较深,各含水层段之间因泥岩及砂质泥岩等隔水岩层普遍发育而水力联系甚微。煤层下伏岩层含水微弱,可视为相对隔水层。煤层直接充水含水层为侏罗系中统直罗组砂岩裂隙含水层,以及侏罗系中统延安组煤层及其顶板砂岩裂隙含水层,充水方式为顶板进水。各直接充水含水层埋藏深,裂隙不甚发育,补给来源缺乏,导水性差,迳流滞缓,富水性微弱,易于疏干。综上所述,勘查区水文地质勘查类型属以裂隙充水为主,水文地质条件简单类型,即“二类一型”。E、构造及其对矿床充水的影响(1)大气降水对矿床充水的影响据麟游县气象资料,勘查区多年平均降水量641.60mm。年降水主要集中于7、8、9月,历年410月总降雨量占全年降水量的81.1
22、%97.0%。降水多以地表迳流形式汇入河沟,流向勘查区之外,加之矿井直接充水含水层(,IX)埋藏而无出露,主要含水层()出露于谷坡局部地段,且多呈陡坎而不利于降水渗入补给地下水。因此,大气降水对未来矿坑充水影响不大。(2)地表水对矿床充水的影响勘查区地表水均属泾河三级支流,自南向北流入一、二级支流黑河及达溪河,最终汇入泾河,流量35.213108.586m3/s。河流切割深度仅达白垩系,煤层开采所形成的导水裂隙带与河流地表水沟通的可能性不大。因此,地表水对矿井充水影响不大。但应注意采取适当的防洪措施。(3)地下水对矿床充水的影响未来矿井井巷开拓过程中,矿坑系统的直接充水含水层为侏罗系延安组煤系
23、裂隙含水层()及直罗组砂岩裂隙含水层(),充水含水层富水性弱,裂隙不甚发育,充水方式为顶板进水型。但随着矿井的开拓,导水裂隙带的形成与扩展,白垩系砂砾岩含水层(+)中的地下水,有可能在局部地段通过透水进入井巷系统,形成局部地段顶板透水。(4)充水通道勘查区矿井充水通道主要为煤层采空顶板冒裂所形成的导水裂隙,其次为断层及节理裂隙。因此,对煤层顶板复合岩体冒裂带发育特征的分析研究尤为重要。以下仅对3煤层开采的冒落带和导水裂隙带最大高度进行计算,导水裂隙带高度与煤层顶板岩体工程地质性质、煤层采厚、采煤方法、顶板管理方法密切相关。即: Hc=4.0M式中:Hc冒落带高度(m) Hf导水裂隙带高度(m)
24、 M累计采厚(m) n煤分层层数所计算的冒落带及导水裂隙带最大高度详见表1-1。表1-1 3煤开采后导水裂隙高度计算表孔 号K1y 厚 度J2a 厚 度J2z 厚 度3煤顶至J2y顶厚度3煤顶至K1y底距离3煤厚度冒落带高度导水裂隙高度保护层厚度(m)(m)(m)(m)(m)(m)(m)(m)(m)X1-10125.0319.5258.29202.847.4429.76109.8992.95X1-20115.296.6624.07146.027.3029.20107.9238.10X1-30166.8832.6578.72277.8015.8063.20157.02120.78X3-10141
25、.9823.8172.94238.7315.1360.52150.5888.71X3-20124.9026.7643.69195.3530.50122.00227.73-32.38X3-30147.0325.5639.74212.3324.9299.68187.0025.33X3-437.11134.2717.5429.33181.1413.0052.00130.1051.04X3-50122.2914.8626.99164.1412.1648.64122.0242.12X3-638.45114.4921.6956.27192.4511.2344.92113.0879.37X5-10107.2
26、628.7729.91165.9421.3385.32160.795.15X5-20107.5832.9724.40164.9519.3577.40186.3439.39X7-1076.8516.1532.43125.439.4537.8095.9729.46X7-20105.2023.5058.55187.2517.8971.56177.1210.13X7-353.2599.0723.4026.37148.849.5038.0096.4552.39P1-134.10109.9443.7777.60231.3115.3061.20152.2279.09P1-220.47102.5820.665
27、6.64179.888.1732.68120.1759.71P1-314.15127.0028.4431.66187.1022.6090.40170.0617.04P1-4244.0095.8015.933.32125.05P5-112.7084.1335.3543.51162.996.024.0089.6173.38P5-211.40111.1535.4151.63198.1927.77111.08207.80-18.61P5-40110.8933.8311.37156.099.7839.1299.1356.96147.1788.6740.1547.28176.107.0028.00103.
28、6972.4115271.5081.438.7355.43145.596.3925.5695.1050.49由图表所知:冒落带高度24.0(P5-1)122.0m(X3-2),X1-2、X3-2、X3-3、X3-4等13个钻孔冒落带波及3煤上覆直罗组砂岩裂隙含水层()。导水裂隙带最大高度89.61(P5-1)227.73m(P3-2),除X3-2、X5-1、P5-2等3孔之外。区内其余钻孔最大导水裂隙带高度均未及白垩系底界,未来矿井开采矿坑系统直接充水含水层为延安组及直罗组裂隙含水层(及),白垩系砂岩含水层中地下水不会直接进入坑道系统,随着井巷开拓,导水裂隙带的形成与扩展,白垩系砂岩水(及)有
29、可能局部透水,对矿井生产可能形成威胁。(5)充水强度分析矿井直接充水含水层直罗组砂岩裂隙含水层()及延安组煤层及其顶板砂岩裂隙含水层(),埋藏深而裂隙不甚发育,补给来源单一,导水性差,迳流滞缓,富水性弱,对矿井开采威协不大。白垩系洛河砂岩含水层(及)为勘查区主要含水层,其分布广,厚度大,富水性较IX、X含水层强。3煤层全面采动后,局部地段洛河砂岩含水层有可能与3煤导水裂隙带贯通,地下水通过透水“天窗”进入矿坑,虽为矿坑间接充水含水层,但对矿井开采可能构成一定威协。1.2.7.2矿井涌水量预算详查地质报告未提供矿井开采的正常涌水量和最大涌水量。邻近彬长矿区各生产矿井水文地质条件与本矿井基本类似,
30、亭南矿井现生产能力为3.00Mt/a,矿井正常涌水量为180m3/h,最大涌水量为270m3/h,大佛寺矿井生产能力为6.00Mt/a,矿井正常涌水量为210m3/h,最大涌水量为330m3/h。本矿井生产能力4.00 Mt/a,暂按正常涌水量250m3/h和最大涌水量350m3/h计算。1.3井筒技术特征井筒中心坐标(X=3859515.000,Y=36485710.000)全深609m,净直径8.4m,净断面积55.4m2,井筒穿过表土及基岩风化带段长120m,基岩段489m,并设计有安全出口、休息硐室,井底马头门。 表土段井筒设计为双层钢筋混凝土结构,强度等级为C35,1号壁座以上段壁厚
31、750mm,壁座以下表土及风化基岩段井筒壁厚600mm;钢筋绑扎为:纵向钢筋为20mm,间距为250mm;横向环筋为20mm,间距为250mm。基岩段支护方式为单层钢筋混凝土支护,壁厚为500mm,砼强度等级为C35;钢筋绑扎为:纵向钢筋为20mm,间距为250mm;横向环筋为20mm,间距为250mm。详见崔木副立井平、剖面图。井筒垂深-581.00m处设计为双侧马头门,断面技术特征另见施工图。第二章 施工准备与场地布置2.1施工总平面布置2.1.1布置原则(1)在工广内布置的临时建筑尽量避开拟建的永久建筑位置或在使用时间与拟建永久建筑的施工时间错开。(2)临时建筑的布置要符合施工工艺流程的
32、要求,做到合理布置。临时工业建筑,为井口服务的设施,布置在井口周围。动力设施靠近负荷中心,木材、钢筋、机修加工厂房,靠近器材仓库和堆放场地。建筑施工器材运输、堆放方便。(3)符合环境保护、劳动保护、防火要求。2.1.2施工总平面布置施工总平面布置详见附表1“副井工广总平面布置图”。地面大临工程详见表2-1风井工广大临工程一览表。副井工广大临工程一览表 表2-1序号工 程 名 称结 构 形 式面积备 注1绞车房轻钢结构157+1442稳、绞设备基础砼450m33压风机房彩板房724机修车间彩板房605材料库彩板房606砂石料场混凝土铺面14197混凝土搅拌站简易708灯房彩板房209宿舍、更衣室
33、彩板房86010锅炉房板房4611食堂彩板房18212浴室彩板房86.313办公室彩板房18014临时配电室彩板房72合计38782.2施工准备2.2.1设备和人员进场接到中标通知书后,立即组织精兵强将和充足的设备进点施工。根据合同约定的时间,项目部管理人员、测量人员、物资供应人员及相应设备迅速进入现场,进行施工现场的前期准备,组织人员进行施工临时设施搭建工作以及大宗材料堆放场地的平整等项工作。随后机电安装人员、部分矿建施工人员及凿井设备进场,全面开展各项施工准备工作。其余人员和设备根据准备工作进展以及施工进展情况按计划陆续进场。2.2.2技术准备(1)组织技术与管理人员勘测现场,认真审阅图纸
34、,学习技术规范,组织图纸会审,并在此基础上编制各分部、分项工程施工作业指导书,准备好各种技术资料和表格,开工前做好各项技术交底和各项培训。(2)组织测量人员做好接桩、复测工作,按业主提供的导线点、水准点进行全面复核校验,进行井口十字基桩的布设。2.2.3材料、机具、设备准备(1)根据施工进度计划编制各种材料、设备、工器具供应计划,并落实设备、材料、工器具的进场与保管。(2)提前落实各种材料的货源及采购,特别是钢材、木材、水泥以及砂、石等大宗材料,并做好材料复试验工作。(3)对于进点后立即开展的施工项目,其设备、工器具各种施工材料均应提前充分准备。第三章 施工方案及凿井主要辅助系统3.1施工方案
35、的选择副井井筒及相关硐室施工优选最佳施工方案,实现安全、快速、质优为目的。最大限度地推广采用新技术、新工艺、新材料、新设备,严格按照ISO9001:2000质量体系程序运行,确保工程施工的每一个阶段、每一个环节、每一道工序都处于受控状态,确保工程质量全优。3.1.1井筒施工方案(1)方案1:掘砌长段单行作业,采用锚喷临时支护,掘砌段高2040m左右. 优点:施工管理简单,易于掌握,井壁接茬少,封水性能较强。 缺点:需增加临时支护,占用了工期,并且喷射砼回弹料不利于排水,掘砌转换时间长,施工速度慢。(2)方案2:短段掘砌混合作业,固定段高2-4m。优点:围岩暴露时间短,施工安全,不需临时支护,简
36、化了施工工序,易于实现机械化,施工速度快。缺点:掘砌交替频繁,井壁接茬多,封水性能差。为提高建井速度,缩短工期,决定采用方案2“短段掘砌混合作业”作为井筒基岩段施工方案。3.1.2与井筒相连接的相关工程施工方案 与井筒相连接的相关工程有:休息硐室、安全出口、管子道及副井井筒与井底车场连接处。均采取与井筒同时施工的方案。3.2凿井装备 根据已选定的施工方案,矿建主要施工设备见附表2,凿井设备平面布置见附表3,地面稳绞布置平面图见附表4。3.2.1提升系统3.2.1.1凿井井架凿井井架选用型井架,其主要技术特征为:天轮平台高度:26.360m;天轮平台平面尺寸:7.57.5m;井架基础跨度为:16
37、16 m;二平台到基础面高10.0m;井架总重71.097t。3.2.1.2提升方式及设备采用两套单钩提升,主提升选用2JK-3.5*1.7PA型绞车配备4.0m3吊桶(井筒垂深200m以上可选用5.0m3吊桶,垂深500m以下带水装矸4.0m3吊桶装满系数0.8),副提升选用JK-3.0/20A型绞车配备4.0m3吊桶(垂深350m以下带水装矸吊桶装满系数0.8),担负掘进排矸及设备、材料、人员的提升工作。提升设备技术参数及提升能力见下表:提升机技术特征提升机型号滚 筒最大静张力(t)最大静张力差(t)减速比绳速m/s配用电机功率kiwi个数直径2JK-3.5*1.7PA23.517.011
38、.5205.43800JK-3.0/2013.013.0204.65630井筒提升能力计算表项目提升吊桶容积绳速不同井深提升能力(m3/h)方式(m3)m/s300400500600主钩单钩45.4339.3834.4430.6024.47副钩单钩44.6537.0632.3228.4322.54两套单钩提升能力合计76.4466.7659.0347.013.2.3提升设备验算(1)绞车强度验算2JK-3.5/20型绞车最大静张力验算:a.采用3.0 m3底卸式吊桶下放混凝土时,Fj= QQZ+PSBH0=6480+2165+6.24636=12613.64kg17000kg,符合要求。式中:
39、Q提升物料荷载Q324000.9=6480kgQZ吊桶、钩头、钩头连接装置、滑架重量;底卸式吊桶重1754kg、 钩头重215kg、滑架重196kg; QZ=2165kg; PSB40mm钢丝绳每米单重,PSB6.24kg/m H0最大提升高度,取H0636mb.利用4m3吊桶提升矸石时最大静张力验算井筒垂深200-500m时Fj= QQZ+PSBH0=+ QZ+PSBH0 =7360+1941+6.24530=12608.217000kg,符合要求。井筒垂深500m以下时,吊桶装满系数取0.8,则:Fj= QQZ+PSBH0=+ QZ+PSBH0 =6542.2+1941+6.24636=1
40、0510.8417000kg,符合要求。式中: VTB标准吊桶容积,VTB =4 m3 g岩石松散容重,取 g =1600kg/m3 sh水容重,取 Ks =1000 kg/m3Ks岩石松散系数,1.82.0,取 sh =1.8Km装满系数,取0.9(垂深500m以下取0.8) Qz吊桶、钩头、滑架重量(4m3吊桶重1530kg,11吨钩头重215kg,滑架 重196kg),QZ=1530+215+196=1941kg PSB40mm钢丝绳每米单重,PSB6.24kg/m H0提升高度,H0500+30=530mc.井筒垂深200m以上采用5m3吊桶提升时,Fj= QQZ+PSBH0=+ QZ
41、+PSBH0 =9200+2101+6.24200=12549kg17000kg,符合要求。 式中: VTB标准吊桶容积,VTB =5 m3g岩石松散容重,1600kg/m3 sh水容重,取 Ks =1000 kg/m3Ks岩石松散系数,1.82.0,取 sh =1.8Km装满系数,取0.9 Qz吊桶、钩头、滑架重量(5m3吊桶重1690kg;钩头重215kg;滑架重196kg) PSB40mm钢丝绳每米单重,PSB6.24kg/m H0提升高度,H0200+30=230mJK-3.0/20型绞车强度验算:a.采用3.0 m3底卸式吊桶下放混凝土时,井筒垂深460m以上:Fj= Q1QZ+PS
42、BH0=6480+2165+6.24490=11702.6kg13000kg,符合要求。井筒垂深460m以下:Fj= Q2QZ+PSBH0=5040+2165+6.24636=11173.64kg13000kg,符合要求。式中:Q提升物料荷载,井筒垂深460m以上吊桶装满系数0.9、以下0.7, Q1324000.9=6480kg,Q2324000.8=5760kgQZ吊桶、钩头、钩头连接装置、滑架重量;底卸式吊桶重1754kg、 钩头重215kg、滑架重196kg; QZ=2165kg; PSB40mm钢丝绳每米单重,PSB6.24kg/m H0最大提升高度,取H0636mb.利用4m3吊桶
43、提升矸石时最大静张力验算井筒垂深350m以上时Fj= QQZ+PSBH0=+ QZ+PSBH0 =7360+1941+6.24380=11672.213000kg,符合要求。井筒垂深350m以下时,吊桶装满系数取0.8,则:Fj= QQZ+PSBH0=+ QZ+PSBH0 =6542.2+1941+6.24636=10510.8413000kg,符合要求。式中: VTB标准吊桶容积,VTB =4 m3 g岩石松散容重,取 g =1600kg/m3 sh水容重,取 Ks =1000 kg/m3Ks岩石松散系数,1.82.0,取 sh =1.8Km装满系数,取0.9(垂深460m以下取0.8) Qz吊桶、钩头、滑架重量(4m3吊桶重1530kg,11吨钩头重215kg,滑架 重196kg),QZ=1530+215+196=1941kg PSB40mm钢丝绳每米单重,PSB6.24kg/m H0提升高度,H0500+30=530m(2)电动机功
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100