ImageVerifierCode 换一换
格式:PDF , 页数:13 ,大小:1.36MB ,
资源ID:580641      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/580641.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(果实涩味物质代谢调控研究进展.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

果实涩味物质代谢调控研究进展.pdf

1、DOI:10.13925/ki.gsxb.20220686果实涩味物质代谢调控研究进展邢宏阳,吴金龙*,王力荣*(中国农业科学院郑州果树研究所 国家园艺种质资源库 农业农村部果树育种技术重点实验室,郑州 450009)摘要:涩味是影响果实品质的重要因素之一,除了与单宁含量相关,还受到儿茶素、表儿茶素、绿原酸、新绿原酸等多酚类次生代谢产物的影响。目前,多酚物质的生物合成途径已被解析,其在果实中的积累既受遗传因素影响,又受环境因素调控。总结了果实涩味物质分类、合成与积累、在不同果树上的代谢调控研究进展,阐述了果实脱涩机制与技术,并从建立涩味精准评价标准、完善涩味形成机制、探究不同果树中涩味物质代谢

2、规律,以及选育风味和抗氧化性俱佳的新品种几个方面为果实涩味研究方向提出建议。关键词:果实品质;次生代谢;涩味中图分类号:S66文献标志码:A文章编号:1009-9980(2023)08-1728-13收稿日期:2022-12-26接受日期:2023-02-09基金项目:河南省自然科学基金项目(212300410311);中国农业科学院科技创新工程专项(CAAS-ASTIP-ZZFR-01)作者简介:邢宏阳,女,在读硕士研究生,研究方向为桃种质资源。Tel:18437128921,E-mail:*通信作者Author for correspondence.Tel:0371-55906987,E-

3、mail:;Tel:0371-55906989,E-mail:果树学报2023,40(8):1728-1740Journal of Fruit ScienceAdvances in the metabolism and regulation of astringent substances infruitsXING Hongyang,WU Jinlong*,WANG Lirong*(Zhengzhou Fruit Research Institute,Chinese Academy of Agricultural Sciences/National Horticulture Germplasm

4、 Resources Center/TheKey Laboratory of Biology and Genetic Improvement of Horticultural Crops(Fruit Tree Breeding Technology),Ministry of Agricultureand Rural Affairs,Zhengzhou 450009,Henan,China)Abstract:In recent years,with the rapid development of China s fruit tree industry and the improve-ment

5、of people s consumption level,the demand for high-quality fruit is increasing day by day.Fruitquality is mainly evaluated by two aspects:physicochemical and sensory measurements,the formermainly includes the measurement of types and contents of the nutrients,the latter mainly refelects theflavor sub

6、stances,pigment substances and fruit flesh quality.Among them,fruit flavor,as an intrinsic in-dex to evaluate fruit quality,is also an important factor to determine the market share and planting area,so it has become the hot issue of scientific research.Astringency is one of the basic flavors in fru

7、its,which usually exists in unripe fruits and gradually decreases as the fruits mature.However,some wildresources and cultivars are still relatively astringent after fruit ripening,which has a negative impact onthe utilization of wild germplasm and selection of good varieties.The astringent substanc

8、es in fruitsmainly include tannins,catechins,epicatechin,chlorogenic acid,neochlorogenic acid and other polyphe-nolic secondary metabolites,and the strength of astringency is closely related to the content of con-densed tannins,i.e.proanthocyanidins.The biosynthetic pathways of astringent substances

9、 in plantshave been studied clearly,and they are synthesized in plants mainly through three pathways:phenylpro-pane,flavonoids and phenolic acids.Among them,PAL,LAR and ANR,HCT and C3H are the key en-zymes in the astringent synthesis pathways,respectively.In this paper,we summarized the progress ofp

10、revious studies on the metabolism of astringent substances in persimmon,grape,apple and peachfruits,and found that transcription factors of MYB,bHLH,WD40,NAC,WRKY and bZIP families areinvolved in the metabolism of astringent substances in fruits by positively or negatively regulating the,等:果实涩味物质代谢调

11、控研究进展第8期改革开放以来,我国果树产业发展取得巨大成就,年产值约1万亿元,从业人口约1亿,果树种植面积和产量居世界首位1。同时随着我国经济持续增长,居民消费水平不断升级,对高品质农产品的需求与日俱增。果实品质主要以理化和感官两个方面作为评价指标,前者主要包括营养物质的种类和含量,后者主要指风味物质、色素物质和果实肉质等2。其中果实风味作为评价果实品质的内在指标,也是expression levels of structural genes.It was also found that the mechanisms of action of homologousgenes were not

12、identical in different fruit trees.It is worth mentioning that the environmental factorssuch as light,temperature,water and hormones also affect the synthesis and accumulation of the astrin-gent substances in fruits.In addition,this paper also briefly introduced the mechanism and commonmethods of fr

13、uit astringency removal.The previous research results on the classification of the fruit as-tringent substances,biosynthetic pathways,metabolic regulation and fruit deacidification had laid thefoundation for improving the formation mechanism of fruit astringency,and also provided the basis forselect

14、ing new varieties of fruit trees with low or no astringency.However,there were some shortcom-ings at the same time,so we also put forward future research suggestions:(1)Establishing precise fruitastringency evaluation standards.At present,fruit astringency is classified into four grades:none,slight,

15、medium and much,but the boundaries between different astringency grades are rather vague,and the as-tringency sensitivity varies from person to person,and subjective judgments can make the astringencyevaluation results biased.Therefore,scientific sensory evaluation methods need to adopt to establish

16、 ac-curate fruit astringency evaluation standards.(2)Improving the formation mechanism of fruit astringen-cy,and exploring the genetic law of astringent substances in different fruits.There are many types of as-tringent substances in fruits,but the strength of astringency caused by different astring

17、ent substances isnot clear.The route by which catechins and epicatechins polymerize to form tannins,the main astrin-gent substance,is not clear,and chlorogenic acid and neochlorogenic acid are not fully studied.At thesame time,due to the difference in the content and species of astringent substances

18、 in different fruittrees,and the specificity of the regulatory pathways of homologous genes in different species,it is ofgreat guiding significance to meet different breeding needs by making full use of a variety of experimen-tal methods to improve the formation mechanism of astringent taste in frui

19、ts,to explore the genetic lawof astringent substances in different fruits,and to explore the key genes.(3)Strengthening the researchon fruit astringency removal.At present,the research on deastringency technology focuses on persim-mon fruits,but in production practice,it has been found that some ger

20、mplasms in other fruits also haveobvious astringency,but there is a lack of corresponding research.Therefore,it is necessary to exploredifferent fruit deastringency determination methods in order to provide technical support for improvingfruit quality and germplasm innovation.(4)Seeking the balance

21、between the flavor and the antioxidantcapacity for germplasm innovation.The tannins,chlorogenic acid and neochlorogenic acid all havestrong antioxidant properties and play a positive regulatory role in fruit tree growth and development,resistance to biotic stress and abiotic stress,and promotion of

22、human health.However,the high contentof these substances can affect fruit flavor and reduce fruit quality.Therefore,it is necessary to selectand breed new varieties with strong antioxidant capacity and low astringency through germplasm inno-vation.In summary,this paper reviewed the progress made in

23、the classification,synthesis and accumula-tion of the fruit astringent substances,metabolic regulation,as well as the mechanism and technology offruit astringency removal,and proposed some suggestions on fruit astringency research in order to pro-vide ideas for using wild resources and selecting and

24、 breeding new varieties with low or no astringency.Key words:Fruit quality;Secondary metabolism;Astringency邢宏阳1729果树学报第40卷决定其市场占有率、种植面积的重要因素,因此成为科学研究的重点。涩味是果实的基本风味之一,通常存在于未成熟的果实当中,并随着果实成熟逐渐减弱。但是部分栽培品种3-4和野生资源在果实成熟之后涩味依然比较明显5,阻碍了野生种质的利用和优良品种选育。果实涩味与单宁(tannins)、儿茶素(catechin,C)、表儿茶素(epicatechin,EC)、绿原酸

25、(chlorogenicacid,CA)、新绿原酸(neochlorogenic acid)等多酚物质含量相关6-8,且在不同果树上的遗传调控存在差异。笔者在本研究中从果实涩味物质分类、合成与积累,不同果树涩味物质研究方面取得的进展,果实脱涩机制与技术几个方面进行综述,并提出研究建议,以期为低涩味或无涩味的新品种选育提供思路。1果实涩味物质分类涩味即收敛感,是触觉神经末梢被刺激之后在口腔表面产生的干燥、收紧、粗糙感9。研究表明,涩味化合物主要包括单宁、儿茶素、表儿茶素、绿原酸、新绿原酸等多酚物质,其中单宁对涩味的影响最大6-8。单宁,是植物体内的多酚类次生代谢产物,它产生涩味的机制是其结构中的

26、酚羟基能够与唾液蛋白发生缩合反应,使唾液蛋白发生沉淀,引起口腔的收敛和皱缩10。根据在醇溶液中的溶解性,单宁可被分为可溶性单宁(soluble tannin)和不溶性单宁(in-soluble tannin),其中可溶性单宁可溶于甲醇,而不溶性单宁在无水甲醇中的溶解度极低11。另外根据化学结构,果实中的单宁可被分为水解单宁(hydro-lysable tannins,HTs)和缩合单宁(condensed tannins,CTs)两大类12。HTs由酸及其衍生物与葡萄糖或者多元醇以酯键相连形成,并可以被酸或者酶水解;根据水解产生的酚酸种类,水解单宁又被分为没食子单宁和鞣花单宁13。研究表明鞣花

27、单宁是石榴中主要的涩味物质14。CTs也被称为原花青素(proantho-cyanidins,PAs),是由儿茶素和表儿茶素等黄烷-3-醇单元结构缩合而形成的聚合物15,并能够在热酸作用下缩合成花色素16。据报道,果实涩味与原花青素以及其单体物质儿茶素、表儿茶素含量密切相关6-8。然而,果实涩味并不一定与单宁含量呈线性正相关,还受单宁结构、种类的影响17。酚酸也是广泛存在于植物种子、果皮、蔬菜叶中的一类多酚物质,其结构中包含一个羧酸基团。植物体内的酚酸主要包括羟基苯甲酸和羟基肉桂酸,其中绿原酸是由咖啡酸和奎宁酸结合形成的可溶性羟基肉桂酸18。新绿原酸是绿原酸的同分异构体,且两者均对果实涩味有一

28、定影响。研究表明,桃果实中绿原酸和新绿原酸与果实涩味的相关系数r分别为0.711和0.6604。苹果中也有类似研究,即果实成熟时,酚酸在涩味显著果实中的含量高于低涩味果实中的含量6。但是酚酸导致涩味的机制目前尚不清晰。2涩味物质合成与积累多酚是导致果实涩味的主要物质,其在植物体内主要通过苯丙烷、类黄酮、酚酸三个途径合成。多酚合成的前体物质是苯丙氨酸,然后在苯丙氨酸裂解酶(PAL)、肉桂酸 4-羟化酶(C4H)和 4-香豆酰CoA连接酶(4CL)3种酶的催化下,依次生成肉桂酸、香豆酸和4-香豆酰CoA,这个过程称为苯丙烷类代谢途径。其中PAL是该过程的关键酶和限速酶。之后,多酚代谢经4-香豆酰C

29、oA转入酚酸和类黄酮两条途径(图1)。根据 KEGG 数据库中的代谢通路,4-香豆酰CoA可以通过两条途径生成酚酸:一条是在羟基桂皮酰转移酶(HCT)、香豆酸3-羟化酶(C3 H)催化下依次生成香豆酰莽草酸、咖啡酰莽草酸和咖啡酰辅酶A,另一条途径是直接生成香豆酰奎宁酸,而咖啡酰辅酶和香豆酰奎宁酸可分别被奎宁酸羟基桂皮酰转移酶(HQT)和C3 H催化生成绿原酸。HCT是酚酸合成途径中的关键酶20。杜仲NuHCT21和烟草NtHCT22能够影响绿原酸及黄酮类化合物合成。绿原酸合成途径中另一个关键酶是 C3 H,属于CYP450家族。通过体外酶活性研究,发现该基因编码的产物可催化咖啡酰莽草酸和咖啡酰

30、奎宁酸的羟基化反应并催化绿原酸的合成23。4-香豆酰CoA和丙二酰CoA在查尔酮合成酶(CHS)作用下生成查尔酮,使多酚代谢转入类黄酮生物合成途径。查尔酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)等能够催化查尔酮生成二氢山柰酚等二氢黄酮醇类物质。二氢黄酮醇是花色苷、单宁和其他类黄酮化合物的共同前体产物,能经二氢黄酮醇4-还原酶(DFR)催化形成无色花青素。无色花青素在植物体内有两个分支:能在花青素合成酶(ANS)1730,等:果实涩味物质代谢调控研究进展第8期 图 1:图 2 香豆酸 4-Coumaric acid 肉桂酸 Cinnamic acid 苯丙氨酸 Phenylalanine 对

31、香豆酰 CoA 4-Coumaroyl-CoA 丙二酰 CoA Malonyl-CoA 查尔酮 Chalcone 柚皮素Naringenin 二氢山奈酚Dihydrokaempferol 黄酮醇 Flavonols 二氢槲皮素Dihydroquercetin 无色花青素 Leucocyanidin 儿茶素 Catechin PAL C4H 4CL CHS CHI F3H FLS F3H DFR ANS UFGT 花青素 Cyanidin 表儿茶素 Epicatechin MATE MATE MATE 原花青素Proanthocyanidins 矢车菊素 3-O-葡萄糖苷Cyanidin3-O-

32、glucoside HCT 香豆酰奎宁酸 Coumaroyl quinic acid C3H 绿原酸 Chlorogenic acid 香豆酰莽草酸 Coumaroyl shikimic acid C3H 咖啡酰莽草酸 Caffeoyl shikimic acid 咖啡酰 CoA Caffeoyl-CoA HQT HCT HCT 液泡 Vacuole LAR ANR DkbZIP5 ABA DkMYB4 DkMYC1 DkMYB2 DkMYC1 PAs DkMYB14 Acetaldehyde Souble Insouble Souble PAs Astringency Insouble PA

33、s Non-stringency DkMYB19/2DkmiRNA858 ATG ATG DkWDR1 ABRE Promoter DkF35H DkLAR DkANR DkADH1 DkPDC2 PAs 作用下生成有色花青素,然后有色花青素通过花色素还原酶(ANR)催化得到表儿茶素,也可以直接经无色花色素还原酶(LAR)催化形成儿茶素24;最后表儿茶素和儿茶素聚合生成原花青素25。原花青素的单体物质儿茶素和表儿茶素在细胞质中生成,但是原花青素只在液泡中积累,因此单体物质需要运输到液泡中进行聚合和储存。原花青素单体可以通过MATE26-27和GST28等转运蛋白运输,也可以通过囊泡运输29。此

34、外原花青素单体在液泡中的聚合还受漆酶影响。DkLAC1促使可溶性单宁聚合为不溶性单宁30;FaTT10则促使草莓中原花青素单体的聚合31。蓝色箭头代表苯丙烷代谢途径,紫色箭头代表酚酸代谢途径,黄色箭头代表类黄酮代谢途径,绿色字代表代谢途径中的酶,粉色椭圆代表液泡。PAL.苯丙氨酸裂解酶;C4H.肉桂酸 4-羟化酶;4CL.4-香豆酰 CoA 连接酶;CHS.查尔酮合成酶;CHI.查尔酮异构酶;F3H.黄烷酮 3-羟化酶;F3 H.黄烷酮 3-羟化酶;DFR.二氢黄酮醇 4-还原酶;LAR.无色花青素还原酶;ANR.花青素还原酶;ANS.花青素合成酶;FLS.黄酮醇合酶;UFGT.类黄酮 3-O

35、-葡萄糖基转移酶;MATE.MATE-type 转运子;C3 H.香豆酸 3-羟化酶;HCT.羟基桂皮酰转移酶;HQT.奎宁酸羟基桂皮酰转移酶。The blue arrow represents the phenylpropane metabolic pathway,the purple arrow represents the phenolic acid metabolic pathway,the yellow ar-row represents the flavonoid metabolic pathway,the green word represents the enzyme in t

36、he metabolic process,and the pink oval represents the vac-uole.PAL.Phenylalanine ammonia-lyase;C4H.Cinnamate-4-hydroxylase;4CL.4-coumarate-CoA ligase;CHS.Chalcone synthase;CHI.Chalconeisomerase;F3H.Flavanone 3-hydroxylase;F3 H.Flavanone 3-hydroxylase;DFR.Dihydroflavonol 4-reductase;LAR.Leucocyanidin

37、 reductase;ANR.Anthocyanidin reductase;ANS.Anthocyanidin synthase;FLS.Flavonol synthase;UFGT.UDP glucose:flavonoid 3-O-glucosyltransferase;MATE.Multidrug and toxic compound extrusion transporters;C3 H.Cinnamate 3-hydroxylase;HCT.Hydroxycinnamoyl transferase;HQT.Hy-droxycinnamoyl-CoAquinate transfera

38、se.图 1植物涩味物质代谢途径19Fig.1Metabolic pathways of plant astringent substances19邢宏阳丙二酰 CoAMalonyl-CoA二氢山柰酚Dihydrokaempferol1731果树学报第40卷3不同果实中涩味物质代谢调控3.1柿柿是我国的特色果树之一,在我国已有2000多年的栽培历史32。研究表明,柿果实中的涩味物质主要是原花青素,在新鲜涩柿果实中,其含量约占鲜果质量的2%33。柿品种众多,根据果实成熟时能否在树上自然脱涩以及涩味性状遗传特点,可将栽培品种分为完全甜柿(PCNA)和非完全甜柿(非PC-NA)34。其中PCNA果实

39、在树上就能自然脱涩,而非PCNA型果实在完全成熟之前仍然具有涩味,需要人工脱涩才能食用。目前,F3 5 H、ANR和LAR已被报道与柿原花青素的生物合成相关,且PCNA型果实中F3 5 H、ANR表达量显著低于非PCNA型35-36。通过对果实发育过程中ANR和LAR的表达量进行测定,发现DkANR的表达量显著高于DkLAR35,这与原花青素结构中表儿茶素含量较高的结果相一致37。在发育过程中,DkANR的表达量与原花青素含量存在正相关;当果实成熟时,ANR表达受到强烈抑制,且伴随原花青素含量的减少37。因此DkANR可能是柿原花青素生物合成的关键基因。另外柿原花青素的合成与积累也受到转录因子

40、的调节作用。通常来说,MYB 转录因子常与 bHLH、WD40 蛋白形成 MBW复合体共同调控多酚物质的生物合成,同时也可单独发挥调控作用。DkMYB2能够与bHLH转录因子结合,共同增强ANR启动子活性,也可以单独激活ANR启动子活性;而DkMYB4则必须与bHLH共同发挥作用37-38。DkMYB4能够与DkANS、DkF3 5 H、DkANR启动子区的MYBCORE顺式基序结合,但对DkLAR的表达没有影响39。同时DkMYB4的表达受到ABA响应因子DkbZIP5的调控。DkbZIP5能够识别DkMYB4启动子区的ABA响应元件ABRE,激活DkMYB4活性,正向调控原花青素的合成40

41、。此外,柿中鉴定到的 WD40 蛋白 DkWDR1 能与 DkMYB4结合并抑制DkMYB4的表达37。同时负调控因子也参与柿果实中原花青素的生物合成。DkMYB14能够抑制类黄酮生物合成途径中相关基因的表达,直接抑制原花青素的合成41。miRNA858b 通 过 负 调 控 靶 基 因 DkMYB19、Dk-MYB20 的表达,抑制果实和叶片中原花青素的积累42。值得指出的是,部分调节因子通过分解涩味物质或者改变其结构,从而改善果实风味。Dk-MYB14可以激活乙醛生物合成途径的相关基因,促使乙醛的合成;而乙醛结构中的醛基能与可溶性单宁的酚羟基发生酚醛缩合反应,使可溶性单宁转为不溶性的单宁,

42、使果实脱涩41,43;DkLAC1通过改变单宁的聚合度,最终使果实涩味减弱30(图2)。3.2葡萄单宁是葡萄酒中重要的苦味和涩味成分,赋予葡萄酒饱满度和骨架感,因此也被誉为葡萄酒的灵魂44。葡萄各组织部位都含有单宁,但不同组织在单宁含量、聚合度、结构方面存在差异,其中果皮单宁的主要组成单位是儿茶素、表儿茶素、表儿茶素没食子酸酯和表没食子儿茶素,聚合度为313345;而种子中的单宁则富含表儿茶素,聚合度较低24。在葡萄中,存在2个与儿茶素合成高度相关的基因 LAR1 和 LAR246。值得指出的是,MYB 因子VvMYBPA1 和 VvMYBPA2 可以激活 ANR 和 LAR1的表达,但不能激

43、活LAR247-48,而VvMYBPAR则同时激活ANR、LAR1、LAR2、CHS、MATE的表达,促进果实原花青素合成与运输49。VvMYB5a/5b能够与bHLH家族的转录因子AtEGL3共同调控VvCHI和VvLAR1的启动子活性,在果实发育早期正向调控葡萄果皮、果肉和种子中原花青素的合成50-51。葡萄中鉴定到的 bHLH 家族转录因子 VvMYC152、VvMYCA153通过与MYB转录因子相互作用,共同激活原花青素代谢通路上的结构基因。同时从葡萄中分离出的VvWDR1常与MYB和bHLH形成转录复合体,调控花青素和原花青素合成54。另外,WRKY家族的WKRY26能够与VvMYB

44、5a互作,激活VvCHI以及液泡酸化相关基因,故在原花青素合成和积累中起正向调控作用55。此外还鉴定到一系列负调控因子。VvMYBC2-L1/L3在过表达的情况下会降低原花青素的含量56。miRNA TAS4能够使VvMYBPA1、VvMYBPA2 的 同 源 基 因 VvMYBA6 和VvMYBA7沉默,从而负调控花和果实中原花青素的合成57(图3)。另外,环境因素也参与涩味物质的代谢过程。光能够诱导VvMYBF1的表达,从而提高VvFLS1的转录水平58。遮光处理不但会减少原花青素的生物合成,还会导致其结构中三羟基化亚基比例和平均聚合度降低11,而果实涩味随单宁聚合度的增大而增强59。但是

45、紫外线的强度并不影响原花青素的含1732,等:果实涩味物质代谢调控研究进展第8期 图 3:图 4:VvMYC1/VvMYCAVvMYC1 Light VvWRKY26 VvWRKY26 Water deficit VvMYBA6/VvMYBA7 VvmiRNA TAS4 VvMYBF1 VvMYB5a VvMYBPAR VvMYBC2-L1/VvMYBC2-L3 VvMYBPA1 CHI FLS LAR1 LAR2 ANR MATE VvWDR1 VvWDR1 MdbHLH33 MdBZR1 MdMYB9/1Promoter MdbHLH33 MdMYBPAMBS MBS MdNAC52 Md

46、WRKY4MdMYB12 MdHY5 PAs Light miRNA858 MeJA MdJa2 BR ATG ATG MdMYBPA1 LTR ATG MdbHLH33 MRE/MBS ATG Anthocyanin Low temperture MdLAR ATG MdANS 蓝色箭头代表正向调控,红色箭头代表负向调控,橘色椭圆代表转录因子,蓝色方框代表结构基因,绿色方框代表顺式作用元件。The blue arrow represents positive regulation,the red arrow represents negative regulation,the orange

47、oval represents the transcription factor,theblue box represents the structural gene.图 3葡萄涩味物质代谢调控模式Fig.3Diagram of the metabolic regulation pattern of grape astringent substances in grape 图 1:图 2 香豆酸 4-Coumaric acid 肉桂酸 Cinnamic acid 苯丙氨酸 Phenylalanine 对香豆酰 CoA 4-Coumaroyl-CoA 丙二酰 CoA Malonyl-CoA 查尔

48、酮 Chalcone 柚皮素Naringenin 二氢山奈酚Dihydrokaempferol 黄酮醇 Flavonols 二氢槲皮素Dihydroquercetin 无色花青素 Leucocyanidin 儿茶素 Catechin PAL C4H 4CL CHS CHI F3H FLS F3H DFR ANS UFGT 花青素 Cyanidin 表儿茶素 Epicatechin MATE MATE MATE 原花青素Proanthocyanidins 矢车菊素 3-O-葡萄糖苷Cyanidin3-O-glucoside HCT 香豆酰奎宁酸 Coumaroyl quinic acid C3H

49、 绿原酸 Chlorogenic acid 香豆酰莽草酸 Coumaroyl shikimic acid C3H 咖啡酰莽草酸 Caffeoyl shikimic acid 咖啡酰 CoA Caffeoyl-CoA HQT HCT HCT 液泡 Vacuole LAR ANR DkbZIP5 ABA DkMYB4 DkMYC1 DkMYB2 DkMYC1 PAs DkMYB14 Acetaldehyde Souble Insouble Souble PAs Astringency Insouble PAs Non-stringency DkMYB19/2DkmiRNA858 ATG ATG D

50、kWDR1 ABRE Promoter DkF35H DkLAR DkANR DkADH1 DkPDC2 PAs 蓝色箭头代表正向调控,红色箭头代表负向调控,橘色椭圆代表转录因子,蓝色方框代表结构基因,绿色方框代表顺式作用元件。虚线表示DkMYB2 既可以与 bHLH 转录因子形成复合体,也可以单独发挥调控作用。The blue arrow represents positive regulation,the red arrow represents negative regulation,the orange oval represents the transcription factor,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服