ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:41KB ,
资源ID:5783194      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5783194.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《二次函数y=ax2的图象和性质》教学设计.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《二次函数y=ax2的图象和性质》教学设计.doc

1、教学设计方案 贵州省六盘水市水城县猴场中学朱启娥课程名称二次函数y=ax2的图象和性质教学目标一、知识技能:1、会用描点法画出二次函数的图象;2、根据图象观察、分析出二次函数 的性质;3、理解二次函数和抛物线的有关知识二、过程与方法:培养学生用数形结合的思想研究二次函数y=ax2的图象、性质,提高学生观察、分析、比较、概括等能力。三、情感态度价值观:学生经历观察、发现、探究等数学活动,感受到二次函数图像的对称美,曲线的平滑美。渗透由特殊到一般的辩证唯物主义观点;渗透数形结合的数学思想方法,培养观察能力和分析问题的能力;培养学生勇于探索创新及实事求是的科学态度.教学重点二次函数的图象的作法和性质

2、教学难点根据图象认识和理解二次函数表达式与图象之间的联系问题与情景师生行为设计意图活动1 创设情景在研究一种函数时,它的图象和性质对我们来说非常重要。今天我们就来结识二次函数的图象。请同学们自己先试着画出二次函数y=x2的图象。(1)引导学生画出函数的图像。(2)请学生展示所画的图形,肯定学生的表现,然后用直尺板演作图过程,画出规范的图像,同时指出自变量x可以取任意实数,只需要画出图像的一部分即可,而且描的点越多图像越精确。学生们过去已熟知了画函数图象的方法:列表、描点、连线。因此在这一问题上教师不作过多提示,完全把这跳一跳,摸得着的问题完全交给学生。活动2 议一议:请同学们观察y=x2的图象

3、的性质,然后分组探讨。做一做:(1)教师问:二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象,它与二次函数y=x2的图象有了什么变化?(1)让学生概括图像的特点,提示学生从开口方向、对称性等方面考虑。(2)肯定学生的表现,讲解:这样的曲线通常叫做抛物线。他有一条对称轴,抛物线于它的对称轴的交点叫做抛物线的顶点。(3) 提示学生从图像开口方向,顶点坐标,对称轴几方面分析函数图象的共同点和不同点。在此问题上,不需要按课本上的问题一一叠列给学生,而是尽量充分发挥学生的观察能力;再者学生已研究过正比例函数、一次函数、反比例函数,已经积累了一定的研究函数图象的方法和能力,积累了研究函数图象

4、要“研究什么”的经验,有了一定“模式”, 图象形状:抛物线(由教师给出) 与x、y轴交点; y随x的增减性; 图象的对称性。及系数与图象的关系。活动3一、 归纳分析的性质二、练一练:若正方形的边长为a,面积为s,试求出面积s与边长a的关系式,并画出图象。学生互相交流,讨论,然后举手回答:当 a0 时,抛物线开口向下,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降。顶点是抛物线上位置最高的点。当 a0 时,二次函数具有这样的性质:当 x 0 时,函数值 y 随 x 的增大而增大;当 x0 时,函数值 y 随 x 的增大而减少;当x=0 时,函数取最小值y=0。学生独立完成以后

5、,让他们发表自己的看法,辨证出图象只在第一象限存在。学生对比前面的总结,归纳方式概括出当 a0 时函数图象的性质,既让学生掌握了知识,又提高了学生归纳,总结的能力。在语言问题上,为了规范化,教师要给以纠正。 在实际应用的问题上,教师先不要进行过多的提醒,让学生进一步体会自变量“x”的取值范围的特殊性。活动4反思评价: 本节课只是学习二次函数y=ax2的图像和性质,并用其性质解决实际问题,在教学过程中让学生通过观察说明性质,向学生渗透了数形结合的思想:让学生自主探索函数的开口方向,对称轴和顶点坐标。同时,鼓励学生拓展思路,注重方法的多样性。我认为这节课有两方面的突破:一是学生的思维得到了很好的训

6、练和发展。以往解决这类问题,常常教师讲解例题,学生模仿练习。这节课中,我从学生能做的简单问题入手,逐步深入,通过观察、讨论和交流,归纳出图像的性质。、图象“抛物线”是轴对称图形;、与x、y轴交点(0,0)即原点;、a的绝对值越大抛物线开口越大,a0,开口向上,当x0时,(对称轴左侧),y随x的增大而减小(y随x的减小而增大)当x0时,(对称轴右侧),y随x的增大而增大(y随x的减小而减小)a0,开口向下,当x0时,(对称轴左侧),y随x的增大而增大(y随x的减小而减小)当x0时,(对称轴右侧),y随x的增大而减小(y随x的减小而增大) 二是学生自主学习得到了很好的落实,发挥了学生的主体作用。本节课的一些知识方法和实际问题的解决,都是由学生来完成的,教师只是在关键性和概括性的语言表达上给与点拨和帮助。小组合作和探究真正落实到实处,发挥了很好的作用。3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服