ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:301KB ,
资源ID:5782710      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5782710.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(《不规则图形的面积-》教学设计.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《不规则图形的面积-》教学设计.doc

1、《不规则图形的面积》教学设计(1课时) 大寨小学 王博 一、教学内容:本节课选自人民教育出版社小学数学五年级上册第六单元《多边形面积》100页例5,求不规则图形面积。 二、教材分析:估算不规则图形面积是人教版五年级上册第六单元的内容,因为学生是第一次接触此类内容,所以主要是利用方格图作为背景进行估计与计算。估计边界比较复杂的不规则图形的面积,需要“凑整”(割、补、添加、舍去等)。学生往往容易出错,可采用以大化小的策略,同时培养学生认真仔细的习惯。因选取的角度、采用的方法不同,学生得到的结果会不同。所以,结果突出估算只要在一定范围内即可。 三、学情分析:长期以来,小学数学几何图形面积计算

2、的内容已经形成一种共识,即计算规则图形的面积,也就是常说的能用公式进行计算的图形。但新数学课程标准中则增加了估计与计算不规则图形的面积,之所以增加是因为生活中大量不规则图形的存在,需要学生有较强的估计能力,即能根据图形的形状,会用各种方法迅速估计出这个图形的面积,甚至能直觉地估计出图形的面积。 四、教学目标 (一)知识与技能 初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。 (二)、过程与方法 用数格子方法和近似图形求积法估测不规则图形的面积。 (三)情感、态度与价值观 培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。 五、教学重难点 教学重

3、点:将规则的简单图形和形似的不规则图形建立联系。 教学难点:掌握估算的习惯和方法的选择。 六、教学策略 在实际生活中,经常会接触到各种各样的不规则图形,有很多图形进行分割后仍难以找到基本的图形,这就给学生解决问题设置了障碍,需要学生灵运用各种方法去尝试解决问题。 ①分割法。  对于有些不规则的图形,我们可以想办法把它分割成几个已学过的规则的图形,先求出规则图形的面积,然后把得出的各图形面积相加,求出不规则图形的面积。 ②方格法。   对于有些不规则的图形,可以用透明方格纸覆盖在这个图形上,再分别数出位于图形轮廓线内完整的格数和不完整的格数,规定多半格看成整格,少半格舍去,整格和多

4、半格的个数的和就是所求图形近似地的面积。 七、教学准备(多媒体课件) 八、教学过程 (一)导入新课 师:出示图片:秋天的图片。并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,我们可以研究它的什么呢? 生:我们可以求树叶的面积。 出示一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。 师:它是一个不规则的图形,那么面积如何计算呢? 学生通过交流,会想到用方格数出来,如果想不到教师可以提醒学生。 (二)新课学习 师:出示教材第100页情境图中的树叶。这片叶子的形状不规则,怎么计算面积呢? (让学生思考,并在小组内交流)

5、学生可能会想到:可以将树叶放在透明方格纸上来计数。 对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。 演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。 引导学生观察情境图,说一说发现了一些什么情况? 生:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。 师:同学们观察的非常仔细,那么接下来请同学们同桌合作探索树叶的面积。 明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。 (1)先让学生估一估,这片叶子的面积大约是多少平方厘米。 (2)再让学生数一下整格的:一共有18格。 引导思考:余下方格的怎么办?

6、 小组交流讨论,汇报。 师:通过一阵热烈的讨论。我相信同学们已经得到了自己的答案。那么哪名同学能勇敢的说一说呢? 生:我们数出整格有十八个,而不足一格的可以把少的与多的拼在一起算一格;也可以把大于等于半格的算一格,小于半格的可以舍去不算。 师:说的非常好,谁还能说一说? 生:我们数的整格和大家相同,但我们把不满一格的都按半格计算,通过数方格可以得出:这片叶子的面积大约是27cm2。 师:刚才从同学们的回答中老师发现大家都用了一个词“大约”,为什么这里要说树叶的面积是“大约”? 生:因为我们数的方格有的多算,有的少,算出的面积不是准确数。 师:除了数方格,你还能用其他方法来计算叶

7、子的面积吗? 小组讨论、交流。学生有了前面学习的经验后,会想到可以把叶子的图形转化成学过的平面图形来估算。 生:我们可以把树叶看成一个我们学过的规则图形。 师:那你来观察一下,这片叶子的形状近似于我们学过的哪种图形。 生:平行四边形。 思考:你能将叶子的图形近似转化成平行四边形吗? 学生回答,师根据学生的回答多媒体出示将叶子转化成平行四边形的过程(即教材第100页第三幅情境图)。 师:请同学们数一数这个平行四边形的底与高分别是多少,再尝试计算。 (平行四边形的底是5厘米,高6厘米。) 学生自主解答,并汇报。 根据学生汇报板书计算过程: S=ah =5×

8、6 =30(cm2) 师:谁能再说一说,你是怎样估算树叶的面积? 答:先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。 (三)结论总结: 师:这节课你学会了什么?有哪些收获? 引导总结: 1.求不规则图形的面积时,先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。 2.不规则图形的面积都不是准确值,而是一个近似数。  (四)课堂练习 1.图中每个小方格的面积为1m2,请你估计这个池塘的面积。 2. 3. 4、 (五)作业布置 教材第102页练习二十二第7、11题。

9、 板书设计 数格法 割补法 S=ah =5×6 =30(cm2) 教学反思: 多边形的面积学习层次逐步升高,每一次的新知的学习都是借助旧知来解决,而新学到的知识又将用于下节课的知识,这样的转化、连接、层次有序地体现了数学学习的连贯性,通过近两周的学习,学生们不仅收获到了知识,更深刻地体验到了转化思想在数学学习中的重要性。上节课刚刚学习完组合图形的面积,孩子们奇思妙想,你一言我一语地表达自己的观点,将组合图形拆分成我们学过的图形,或加或减解决一个个难题,获取新知。而这节课的学习更有挑战——不规则图形,虽然开始同学们想到了两种办法“数格子、转化”,但在汇报的时候多数人用的都是“转化”,他们用了很多的办法将一片叶子转化成不同的规则图形估出了面积,有些同学十分珍惜发言机会,抓住机会连着表达了自己的一人多法,还用数格子来验证。如此严谨的学习风格如果带入到平时的作业和练习中,孩子们会变得越来越优秀。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服