1、 圆和圆的位置关系教学设计 邱 晶圆和圆的位置关系一、课题:初中九年级数学上册圆和圆的位置关系第一课时二、教材分析:1、教材的地位和作用圆是在学习了直线图形的有关性质的基础上,来研究的一种特殊曲线图形。它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识综合性强。而本节课圆和圆的位置关系的第一节,它是在学习点与圆以及直线与圆的位置关系基础上,对圆与圆的位置关系进行研究学生亲自动手实践,自主探究圆和圆的位置关系,观察分析,猜想验证,完成从感性到理性的发生发展的认知过程然后知识遵循了从实践走向数学,从数学走向生活,让学生学以自用,把数学知识与现实生活紧密相联。本节内
2、容共安排2课时,第一课时让学生明白圆和圆的位置关系,知道五种关系,并能用它解决问题。第二课时强化位置关系的运用,重点解决两圆相交的推理题、计算题,欣赏中考真题。2、教学目标:(1)知识目标1经历探索圆与圆的位置关系,培养学生的探究能力;2了解圆与圆之间的几种位置关系;3能够利用圆和圆的位置关系和数量关系解题(2)能力目标1经历探索两个圆之间位置关系的过程,训练学生的探索能力2通过实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力(3)情感态度价值观学生经过操作、实验、发现、确认等活动,从探索两圆位置关系地过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。
3、3、教材重、难点的处理根据教学内容和学生实际、遵循课程标准,在认真钻研教材的基础上,本节课我将圆探索圆与圆之间几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系为重点。将探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程作为两个难点。将抽象的文字叙述,转化为图形,通过学生自动手操作课件演示,突破“探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程”这一重难点。题例重转化,精分析,并演示,师生共同完成,最后辅之一相关练习题,得以巩固。4、教法、学法A、教法:基于知识较抽象,学生不易理解,我将采用引导探究师生合
4、作为主的教学方法,让学生动起来,主动去发现加解决问题;B、学法:主动实践猜想结论运用解题三、学情分析:九年级学生对圆有一定的认识,但对圆的相关性质掌握较少,对知识的转化能力较差,重在要学生参与,主动探究,增加解决实际问题的能力。由于九(1)班有44名学生,他们中一半的学习基础较好,独立学习的能力也比较强,能在课前对将要教学内容进行预习,在课堂上也能积极发言,作业也能独立完成;但也有部分学困生在知识的理解和动手的能力上存在问题。因此要求他们对本课的内容进行预习熟知。通过预习将教学的重点和难点应放在两圆圆心距与两圆半径间的数量关系的推导总结上。大部分学生对这节课的学习有很高积极性,加上课件动画中图
5、片和总结圆和圆的位置关系的定义、圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系动画效果采用,学生的学习主动性和探求知识的情绪也会很高,运用课件也能激发他们学习的欲望。但本班学习相对较困难的学生,对重点和难点的理解可能存在一定困惑。对这种个别现象,不做强制性要求,只帮助他们能理解圆和圆的位置关系并记住两圆圆心距与两圆半径间的数量关系即可。四、教学过程(一)、复习导入:请说出点与圆;直线与圆的位置关系,并分别说出判定方法情景创设:我们生活在丰富多彩的图形世界里,圆与圆组成的图形是我们生活中最常见的画面。比如:自行车的两个轮子、奥运会的会标、皮带轮、红绿灯等照片(大屏幕演示),你还能举出两个圆组
6、成的图形吗?(学生举例)。(设计意图:展现生活中圆与圆组成的图形并由学生举出实例,丰富学生对客观世界中两个圆之间多种不同位置关系的感受,为学生自主探索提供可能。)(二)、新授活动一问题1,圆和圆有哪些位置关系?(分组讨论)教师课前布置好:每人都在纸上画两个半径不等的圆,每个人都准备在纸上移动其中一个圆,让学生观察两圆的位置关系和公共点的个数。让学生自己画出可能会出现的几种情况,并标清交点的个数(按从远到近的顺序)问题2,试一试你能不能描述两圆的各种位置关系?学生思考回答,师生共同总结:1两个圆没有公共点,就说这两个圆相离,如上图中的(1)、(5)、(6),它们又有何区别?讨论得出其中(1)叫外
7、离,(5)(6)叫内含,(6)是两圆同心,是两圆内含的一种特殊情况。2两圆只有一个公共点,就说这两圆相切,如上图是的(2)(4),同样找出它们的区别,其中(2)叫外切,(4)叫内切。3两圆有两个公共点,就说这两个圆相交,如上图(3)。因此两园的位置关系为:(大屏幕投影)(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离(图1)(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切这个唯一的公共点叫做切点(图2) (3)相交:两个圆有两个公共点,此时叫做这两个圆相交(图3)(4)内切:两个圆有唯一的公共点,并
8、且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切这个唯一的公共点叫做切点(图4)(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图5)两圆同心是两圆内含的一个特例(图6)大屏幕展示圆和圆的五种位置关系:外离、外切、相交、内切、内含。问题3,两个圆的位置关系发生变化的时候,圆心距d与两个圆的半径R与r(Rr)之间有没有内在的联系?请同学们交流一下(给出一定的时间)大屏幕演示两圆由远到近的运动情形,让学生观察圆心距d的变化,然后让学生进行归纳。教师重点关注:学生思考问题的全面性和准确性,尤其是对两圆相交时的圆心距的范围考虑的是否到位。(
9、教师可提示利用三角形三边之间的关系来解决问题)师生共同总结:(大屏幕出示)两圆外离dR+r 两圆外切dR+r两圆相交RrdR+r (Rr) 两圆内切dRr (Rr)两圆内含dRr(Rr) 活动二练习巩固,大屏幕出示:1、若两圆有唯一公共点,且两圆半径分别为5和2,则两圆圆心距为 。2、设O和P的半径分别为R、r,圆心距为d。在下列情况下,两圆的位置关系怎样?(1)R=6,r=3,d=4 (2)R=5,r=2,d=1 (3)R=7,r=3,d(4)R=5,r=2,d=7 (5)R=4, r=1, d=6教师重点关注:学生应用 “数量关系”判定两圆“位置关系”的准确性,尤其注意,只有dR r 或只
10、有dR+ r时不能判定两个圆是相交的,只有 RrdR+r(Rr)时才能判定两个圆是相交的。(设计意图:进一步让学生理解新知,并能熟练准确的应用新知,培养学生全面细致的良好思维品质。)3、大屏幕出示问题:例 如图,OO的半径为4cm,点P是OO外一点,OP=6cm。求(1)以P为圆心作OP OP与OO外切,小圆OP的半径是多少?(2)以P为圆心作OP与OO内切,大圆OP的半径是多少?教师给出图形、板书解答过程。(设计意图:培养学生严谨缜密的思维品质,加强“分类讨论”数学思想的训练。)(三)、拓展联系:试一试:一块铁板,上面有A、B、C三个点,经测量,AB=13cm,BC=14cm,CA=9cm,
11、以各顶点为圆心的三个圆两两外切。求各圆的半径。教师重点关注:应用新知解决问题的能力,进一步巩固新知。(设计意图:渗透三圆相切的情况,培养学生分析、探究问题的能力。)活动三拓展探索:两个圆组成的图形是轴对称吗?如果是那么对称轴是什么?如果两圆相切,切点与对称轴有什么关系?提示,学生可以用折纸方法进行探究。(学生分组讨论,小组选代表回答问题)大屏幕出示:正确结论。两圆组成的图形是轴对称图形,对称轴是通过两圆圆心的直线(连心线),两圆相切时,因为切点是它们唯一的公共点,所以切点一定在连心线上即对称轴上。(设计意图:设计折纸活动实质上是让学生感知两圆组成的图形是轴对称图形,并让学生通过自己的活动从心理
12、上认同经过两圆圆心的直线(即连心线)是两圆组成图形的对称轴为探索两相切、两圆相交的性质创设学习情境。)(四)、小结这节课你有哪些收获?有何体会?你认为自己的表现如何?引导学生回顾、思考、交流。(五)、作业:1、课本51页,习题3、4、5。 2、课下探究:相交两圆的连心线与公共弦有什么样的结论。 3、写一篇数学日记,并解决23个问题。(六)、板书设计圆和圆的位置关系两圆的位置关系 d与r1 、r2 之间的关系 例题板书外离 dr1r2外切 dr1 r2相交 r1 r2dr1 r2内切 dr1 r2内含 dr1 r2五、教学反思由于本节圆与圆的位置关系是新课,这节课的内容与上节“直线和圆的位置关系
13、”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂。因此,我通过让学生动手操作类比直线与圆的位置关系,猜测两圆可能存在的位置关系,然后经过讨论,归纳确定两圆位置关系的各种情况。在与两圆位置关系相应的三量的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法。这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用。当然也有不足之处,比如:虽然我竭力提醒自己要体现出以学生为本的课改精神,但在具体操作中还是会不自觉地喜欢代学生表达观点,往往会发生,学生还没把话说完,我已经急着归纳了。今后我会更加努力,争取向课堂要效率。
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100