ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:36KB ,
资源ID:5779148      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5779148.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(用代入消元法解二元一次方程组_教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

用代入消元法解二元一次方程组_教案.doc

1、利用代入消元法解二元一次方程教案(北师大版新课标实验教材八年级 上册)一、教学目标1、 知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为已知”的化归思想。2、 过程与方法运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。3、 情感、态度、价值观在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。二、教学重、难点1、 教学重点会用代入消元法解二元一次方程组;理解解二元一次方程

2、时的“消元”思想、“化未知为已知”的化归思想。2、 教学难点“消元”的思想;“化未知为已知”的化归思想。三、教学设计1、 复习,引入新课上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。下面请同学们回忆一下它们分别是怎样定义的?(同学们说,说不完的教师利用ppt进行展示)我们知道:适合一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。那么,我们能不能求出它的解呢?要怎样求呢?2、 新课讲解(1)来看我们课本上的例子:上次课我们 设老牛驮了x包,小马驮了y包,并建立如下的方程组。现在要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧

3、?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?(学生讨论,教师巡视指导)通过同学们的讨论我们已经有了解题思想。首先,由方程(1)将x视为已知数解出y=x-2,由于方程组中相同的字母表示同一未知数,所以可以用x-2代替方程(2)中的y,即将y=x-2代入方程(2)。这样就可以把方程化为我们所熟悉的一元一次方程,进而求解这个一元一次方程得到y的值,带回方程组求出x的值,方程组的解就求出来了。好!下面我们一起来解这个方程组(学生说,教师板书)解:由(1),得y=x-2 (3) x+1=2(x-2)-1解得, x=7把x=代入方程(3)得 y=5所以,方程组

4、的解为:因此,就求出了老牛驮了7个包裹,小马驮了5个包裹。来看我们的解题过程,首先将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行形求解。这种求解二元一次方程组的方法称为代入消元法。解题基本思路:消元,化未知为已知。(边说边板书)(2)下面再来看一个例子:解:由(2),得 x=13-4y (4) 将(3)代入(1),得 2(13-4y)+3y=1626-8y+3y=16-5y=-10y=2将y=2代入(3),得 x=5所以原方程的解为3、 课堂练习下面请同学们自己解下列方程组:(1) (2) 解答(略)(让两位同学上黑板做,教师巡视、指导。做完后评讲,给出解题过程)4、 小结复习这节课主要学习了用代入消元法解二元一次方程组,其本思想是消元,将未知转化为已知。主要步骤为将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行求解。5、 布置作业课本习题7.2的1、2题。思考还有其他求解二元一次方程组的方法没有?若果有,怎样解?四、板书设计2.1 解二元一次方程组一、复习引入 例题: 三、总结. .二新课讲解 作业:. 练习: . .五、教学反思进行教学实践后在进行总结、反思、改进。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服