ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:2.01MB ,
资源ID:5778816      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5778816.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(全等三角形判定(一)教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全等三角形判定(一)教学设计.doc

1、 14.2 三角形全等的判定(一)【教学目标】 1探索三角形全等“边角边”的条件 2在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理【教学重、难点】 1应用“边角边”证明两个三角形全等,进而得出线段或角相等(重点) 2能运用“SS”证明简单的三角形全等问题,寻找判定三角形全等的条件(难点)【教学准备】1.教师准备:课件2.学生准备:剪刀、白纸、作图工具。【学情介绍】这节课是探究三角形全等条件的第一课,学生已了解全等三角形的概念及特征,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这为学生主动参与本节课的操作和探究做好

2、了准备。“SAS”条件掌握好了,再学习其他条件就不困难了。【内容分析】 教材通过尺规作图作出一个与已知三角形的两边及其夹角对应相等的三角形,发现这两个三角形能够重合,从而归纳出判定三角形全等的第一种方法“SAS” 。【教学过程】一、温故知新1什么叫全等三角形? 2、全等三角形的性质是什么?3、根据定义判定两个三角形全等,需要知道哪些条件?二、情景导入1、问题:有一人工湖。要测人工湖两端A、B的距离,可无法直接达到,因此这两点的距离,无法直接量出,你能想出办法来吗?(幻灯片出示画面)2.如图,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CDCA,连接BC并延长到E,使CEC

3、B连接DE,那么量出DE的长就是A、B的距离,为什么? (出示幻灯片) 3.板书课题:三角形全等的判定(一)三、合作探究小组活动(一)按以下条件画图并作如下的实验:NMBCBCCCBBAAAA(1)已知任意ABC,画ABC,使ABAB,ACAC,AA (2)把ABC剪下来放到ABC上,观察ABC与ABC是否能够完全重合?由此你能得到什么结论。(学生画图操作)归纳:上述事实说明,两边和它们的夹角对应相等的两个三角形全等。简记为“边角边”或“SAS”(小组内讨论后,师生共同总结)四、随堂练习,巩固深化CBODA练习一1.在下列推理中填写需要补充的条件,使结论成立: (1)如图,在AOB和DOC中

4、AO=DO(已知) _=_( ) BO=CO(已知) AOBDOC( )DEBCA(2).如图,在AEC和ADB中, _ = _(已知A= A( 公共角)_=_(已知) AECADB( )2.在下列图中找出全等三角形,并把它们用线连起来.DBCA308 cm9 cm308 cm8 cm8 cm5 cm308 cm5 cm5 cm308 cm8 cm5 cm308 cm9 cm308 cm8 cm五、范例学习,应用所学例:已知: 如图,AC=AD ,CAB=DAB. 求证: ACB ADB.(小组讨论后,在黑板展示)证明:在ACB 和 ADB中AC = A D (已知) CAB=DAB (已知)

5、 A B = A B (公共边)ACBADB(SAS)六、归纳总结证明三角形全等的步骤。小组活动(二)(各组讨论后发表观点,师生共同总结)证明三角形全等的步骤:1.写出在哪两个三角形中证明全等。(注意把表示对应顶点的字母写在对应的位置上).2.按边、角、边的顺序列出三个条件,用大括号合在一起.3.写出结论.每步要有推理的依据.七、应用所学,解决问题。小组活动(三)问题:如图有一人工湖。要测人工湖两端A、B的距离,可无法直接达到,因此这两点的距离,无法直接量出,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CDCA,连接BC并延长到E,使CECB连接DE,那么量出DE的长就是

6、A、B的距离,为什么? (小组讨论后,在黑板展示)DECBA证明:在ABC和DEC中CA=CD(已知) ACB=DCE(对顶角相等)CB=CE(已知) ABCDEC(SAS) AB=DE(全等三角形对应边相等)八、课堂小结本节课主要学习了那些知识?你获得了那些成功的经验?与同伴进行交流。师生共同归纳总结:1.边角边基本事实的发现过程(包括画图、猜想、分析、归纳等.)2.边角边基本事实:有两边和它们的夹角对应相等的两个三角形全等(SAS)3.边角边基本事实的应用:证明线段(或角)相等转化为证明线段(或角)所在的两个三角形全等.边角边证明两个三角形全等需注意:1. 证明两个三角形全等所需的条件应按

7、边、角、边顺序书写.2. 基本事实中所出现的边与角必须在所证明的两个三角形中. 3. 基本事实中涉及的角必须是两边的夹角.九、课后作业:作业:P.100. 第1,2,3题十、板书设计:(一)三角形全等的判定1:两边及其夹角分别相等的两个三角形全等。简记为“边角边”或“SAS”(二)应用所学,解决问题。DECBA证明:在ABC和DEC中CA=CD(已知) ACB=DCE(对顶角相等)CB=CE(已知) ABCDEC(SAS) AB=DE(全等三角形对应边相等)(三)课堂小结1.边角边的发现过程(包括画图、猜想、分析、归纳等.)2.边角边:两边及其夹角分别相等的两个三角形全等(SAS)3.边角边的应用:证明线段(或角)相等转化为证明线段(或角)所在的两个三角形全等.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服