ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:153.01KB ,
资源ID:5774395      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5774395.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(等比数列前n项和_(公开课教案).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等比数列前n项和_(公开课教案).doc

1、等比数列的前n项和(一)教学目的:1掌握等比数列的前n项和公式及公式证明思路2会用等比数列的前n项和公式解决有关等比数列的一些简单问题教学重点:等比数列的前n项和公式推导教学难点:灵活应用公式解决有关问题授课类型:新授课课时安排:1课时教材分析:本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法教学过程:一、复习:首先回忆一下前两节课所学主要内容:1等比数列:如果一个数列从第二项起,每一项与它的前一项

2、的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比。公比通常用字母q表示(q0),即:成等比数列 =q(,q0) “0”是数列成等比数列的必要非充分条件(前提条件)。2. 等比数列的通项公式: , 3既是等差又是等比数列的数列:非零常数列 4等比中项:G为a与b的等比中项. 即G=(a,b同号).5性质:若m+n=p+q,6判断等比数列的方法:定义法,中项法,通项公式法 如: 有一个数列满足,与公式比较我们可以判断出这个数列为等比数列且。 二、讲解新课: *创设情境 兴趣导入【趣味数学问题】传说国际象棋的发明人是印度的大臣西萨班达依尔,舍罕王为了表彰大臣的功绩,准备对大

3、臣进行奖赏国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子并把这些麦粒赏给您的仆人吧”国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺这位大臣所要求的麦粒数究竟是多少呢?各个格

4、的麦粒数组成首项为1,公比为2的等比数列,大臣西萨班达依尔所要的奖赏就是这个数列的前64项和*动脑思考 探索新知如何求数列1,2,4,262,263的各项和以1为首项,2为公比的等比数列的前64项的和,可表示为: 2 由可得:这种求和方法称为“错位相减法” “错位相减法”,是研究数列求和的一个重要方法等比数列的前n项和公式: 当时, 或 当q=1时,当已知, q, n 时用公式;当已知, q, 时,用公式.公式的推导方法一:一般地,设等比数列它的前n项和是由得 当时, 或 当q=1时,公式的推导方法二: (结论同上) “方程”在代数课程里占有重要的地位,方程思想是应用十分广泛的一种数学思想,利

5、用方程思想,在已知量和未知量之间搭起桥梁,使问题得到解决现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺? 国王承诺奖赏的麦粒数为 ,据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36g,约合7360多亿吨我国2000年小麦的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!*巩固知识 典型例题例5 写出等比数列 的前n项和公式并求出数列的前8项的和解 因为,所以等比数列的前n项和公式为 ,故 例 6 求等比数列1,2,4,从第5项到第10项的和.解 由, 从第5项到第10项的和为-=1008例7 一条信息,若一人得知后用一小时将信息传给两

6、个人,这两个人又用一小时各传给未知此信息的另外两人,如此继续下去,一天时间可传遍多少人?最快几小时全球(67.6亿)人都知道这个消息?解 根据题意可知,获知此信息的人数成首项的等比数列则:一天内获知此信息的人数为:最快33个小时全球人都知道这个消息。*运用知识 强化练习 练习6.3.31求等比数列,的前10项的和2已知等比数列的公比为2,求*归纳小结 强化思想1. 等比数列求和公式:当q=1时,当时, 或 ; 2这节课我们从已有的知识出发,用多种方法(错位相减法、方程法)推导出了等比数列的前n项和公式,并在应用中加深了对公式的认识*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题63A组(必做);教材习题63B组(选做)*教学反思 第 4页(共4页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服