ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:63KB ,
资源ID:5773792      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5773792.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(函数的奇偶性教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

函数的奇偶性教案.doc

1、1.3.3 函数的奇偶性教案(一)教学目标1知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性. 2过程与方法:通过设置问题情境培养学生判断、推断的能力. 3情感、态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质.(二)教学重点与难点重点:函数的奇偶性的概念;难点:函数奇偶性的判断.(三)教学方法应用观察、归纳、启发探究相结合的教学方法,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的

2、过程中获得对函数奇偶性的全面的体验和理解. 对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固.(四)教学过程教学环节教学内容师生互动设计意图复习引入复习在初中学习的轴对称图形和中心对称图形的定义教师提出问题,学生回答.为学生认识奇、偶函数的图象特征做好准备.概念形成1要求学生同桌两人分别画出函数f (x) =x3与g (x) = x2的图象. 2多媒体屏幕上展示函数f (x) =x3和函数g (x) = x2的图象,并让学生分别求出x =3,x =2,x =, 的函数值,同时令两个函数图象上对应的点在两个函数图象上闪现,让学生发现两个函数的对称性反映到函数值上具有的特性:

3、f (x) = f (x),g (x) = g (x). 然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x都成立. 3奇函数、偶函数的定义:奇函数:设函数y = f (x)的定义域为D,如果对D内的任意一个x,都有f (x) = f (x),则这个函数叫奇函数.偶函数:设函数y = g (x)的定义域为D,如果对D内的任意一个x,都有g ( x) = g (x),则这个函数叫做偶函数.1教师指导,学生作图,学生作完图后教师提问:观察我们画出的两个函数的图象,分别具有怎样的对称性?学生回答:f (x) =x3关于原点成中心对称图形;g (x) = x2关于y轴成轴对称图形. 2

4、老师边让学生计算相应的函数值,边操作课件,引导学生发现规律,总结规律,然后要求学生给出证明;学生通过观察和运算逐步发现两个函数具有的不同特征: f (x) = f (x), g (x) = g (x). 3.教师引导归纳:这时我们称函数f (x) = x3这样的函数为奇函数,像函数g (x) = x2这样的函数为偶函数,请同学们根据对奇函数和偶函数的初步认识加以推广,给奇函数和偶函数分别下一个定义.学生讨论后回答,然后老师引导使定义完善. 在屏幕展示奇函数和偶函数的定义.老师:根据定义,哪些同学能举出另外一些奇函数和偶函数的例子?学生:f (x) = ,f (x) = x6 4x4,.1要求学

5、生动手作图以锻炼学生的动手实践能力,为下一步问题的提出做好准备. 并通过问题来引导学生从形的角度认识两个函数各自的特征. 2通过特殊值让学生认识两个函数各自对称性实质:是自变量互为相反数时,函数值互为相反数和相等这两种关系. 3通过引例使学生对奇函数和偶函数的形和数的特征有了初步的认识,此时再让学生给奇函数和偶函数下定义应是水到渠成. 概念深化(1)强调定义中“任意”二字,说明函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性.(2)奇函数与偶函数的定义域的特征是关于原点对称.(3)奇函数与偶函数图象的对称性:如果一个函数是奇函数,则这个函数的图象以坐标原点为对称中心的中心对称图形.

6、反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则它的图形是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数.教师设计以下问题组织学生讨论思考回答.问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?问题2:x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?问题3:结合函数f (x) =x3的图象回答以下问题:(1)对于任意一个奇函数f (x),图象上的点P (x,f (x)关于原点对称点P的坐标是什么?点P是否也在函数f (x)的图象上?由此可得到

7、怎样的结论.(2)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性?学生通过回答问题3 可以把奇函数图象的性质总结出来,然后老师让学生自己研究一下偶函数图象的性质.通过对三个问题的探讨,引导学生认识到:(1)函数的奇偶性 是函数在定义域上的一个整体性质,它不同于单调性.(2)函数的定义域关于原点对称是一个函数为奇函数或偶函数的必要条件.(3)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.应用举例例1 判断下列函数的奇偶性;(1)f (x) = x + x3 +x5;(2)f (x) = x2 +1;(3)f (x) = x + 1;(4)f (x) = x2,x

8、1,3;(5)f (x) = 0.学生练习:判断下列函数的是否具有奇偶性: (1) f (x) = x + x3; (2) f (x) = x2; (3) h (x) = x3 +1; (4) k (x) =,x1,2; (5) f (x) = (x + 1) (x 1); (6) g (x) = x (x + 1); (7) h (x) = x +; (8) k (x) =.例2 研究函数y =的性质并作出它的图象.学生练习: 1判断下列论断是否正确:(1) 如果一个函数的定义域关于坐标原点对原对称,则这个函数关于原点对称;则这个函数为奇函数;(2)如果一个函数为偶函数,则它的定义关于坐标原

9、点对称;(3)如果一个函数定义域关于坐标原点对称,则这个函数为偶函数;(4)如果一个函数的图象关于y轴对称,则这个函数为偶函数.2如果f (0) = a0,函数f (x)可以是奇函数吗?可以是偶函数吗?为什么?3.如果函数f (x)、g (x)为定义域相同的偶函数,试问F (x) =f (x) + g (x)是不是偶函数?是不是奇函数?为什么?4如图,给出了奇函数y = f (x)的局总图象,求f ( 4).xyO425如图,给出了偶函数y = f (x)的局部图象,试比较f (1)与 f (3) 的大小.xyO 32 11选例1的第(1)小题板书来示范解题的步骤,其他例题让几个学生板演,其余

10、学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行学生做好总结归纳.2例2可让学生来设计如何研究函数的性质和图象的方案,并根据学生提供的方案,点评方案的可行性,并比较哪种方案简单.3做完例1和例2后要求学生做练习,及时巩固. 在学生练习过程中,教师做好巡视指导.例1 解答案(1)奇函数(2)偶函数(3)非奇非偶函数(4)非奇非偶函数(5)既奇又偶函数学生练习答案(1)奇函数(2)偶函数(3)非奇非偶函数(4)非奇非偶函数(5)偶函数(6)非奇非偶函数(7)奇函数(8)偶函数例2 偶函数(图略)学生练习1(1)错(2)错(3)错(4)对2不能为奇函数但可以是偶函数3偶函数f (x ) =

11、 f (x)g (x) = g (x)F (x) = F (x)4f (4) = f (4) = 2.5f (3)f (1)又f (3) = f (3)f (1) = f (1)f (3)f (1)1通过例1解决如下问题:根据定义判断一个函数是奇函数还是偶函数的方法和步骤是:第一步先判断函数的定义域是否关于原点对称;第二步判断f (x) = f (x)还是判断f (x) = f (x).通过例1中的第(3)小题说明判断函数既不是奇函数也不是偶函数. 例1中的第(4)小题说明判断函数的奇偶性先要看一下定义域是否关于原点对称. f (x) = 0既不奇函数又是偶函数的函数是函数值为0的常值函数.

12、前提是定义域关于原点对称.总结:对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数;是偶函数但不是奇函数;既是奇函数又是偶函数;既不是奇函数也不是偶函数.2对于例2主要让学生体会学习了函数的奇偶性后为研究函数的性质带来的方便. 在此问题的处理上要先求一下函数的定义域,这是研究函数性质的基础,然后判断函数图象的对称性,再根据奇、偶函数在y轴一侧的图象和性质就可以知道在另一侧的图象和性质.归纳总结从知识、方法两个方面来对本节课的内容进行归纳总结. 让学生谈本节课的收获,并进行反思.关注学生的自主体验,反思和发表本堂课的体验和收获.布置作业1.3第三课时 习案.学生独立完成通过分层作业使学生进一步巩固本节课所学内容. 并为学有余力和学习兴趣浓厚的学生提供进一步学习的机会.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服