ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:52.50KB ,
资源ID:5771915      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5771915.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(等腰三角形的性质教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等腰三角形的性质教案.doc

1、等腰三角形的性质1.1你能证明他们吗【教师寄语】:良好的开端是成功的一半【教学目标】:1、知识与技能:了解作为证明基础的几条公理的内容,掌握证明的基本步骤步骤和书写格式。2、过程与方法:经历“探索-发现-猜想-证明”的过程,能够用综合法证明等腰三角形的有关性质定理。3、情感态度与价值观: 通过探究,养成严谨的科学态度、不懈的探究精神和良好的说理方。【教学重点】:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。【教学难点】:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)【教学方法】:观察法【教学准备】:等腰三角形纸

2、片、三角板【教学过程】:(一)复习:1、 什么是等腰三角形?2、 你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、 试用折纸的办法回忆等腰三角形有哪些性质?(二)新课讲解:在证明(一)一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。1.同学们和我一起来回忆上学期学过的公理w 本套教材选用如下命题作为公理 :w 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 2.两条平行线被第三条直线所截,同位角相等; w 3.两边夹角对应相等的两个三角形全等; (SAS)w 4.两角及其夹边对应相等的两个三角形全等

3、; (ASA)w 5.三边对应相等的两个三角形全等; (SSS)w 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:已知:A=D,B=E,BC=EF求证:ABCDEF证明:A+B+C=180,D+E+F=180(三角形内角和等于180)C=180-(A+B)F=180-(D+E)又A=D,B=E(已知)C=F又BC=EF(已知)ABCDEF(ASA)2.定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,ABAC。求证:BC证明:取BC的中点D,连接

4、AD。ABAC,BDCD,ADAD,ABCACD (SSS)B=C (全等三角形的对应边角相等)(让同学们通过探索、合作交流找出其他的证明方法。做BAC的平分线,交BC边于D;过点A做ADBC。学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明。)3.想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?(应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。)4.推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。(三

5、)随堂练习:做教科书第4页第1,2题。(引导学生分析证明方法,学生动手证明,写出证明过程。)(四)创新例题:在ABC中,AD是角平分线,DEAB, DFAC,试猜想EF与AD之间有什么关系?并证明你的猜想。(五)当堂训练:1、下列各组几何图形中,一定全等的是( )A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:,AB=CD,若要使ABECDF,仍需添加一个条件,下列条件中,哪一个不能使ABECDF的是( )A、A=B ; B、BF=CE; C、AEDF; D、AE=DF.3、如

6、果等腰三角形的一个内角等于500则其余两角的度数为 。4、(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为 。(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为 。5、如图,ABC中, AB=AC, 且BD=BC=AD,则A的度数为 。6、如图,已知D、E在ABC的边BC上,AB=AC,AD=AE,求证:BD=CE 【课堂小结】:通过这节课的学习你学到了什么知识?(学生小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索发现猜想证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。)【作业】 1、基础作业:P5页习题1.1 1、2。2、拓展作业:学习与拓广素质达标3、预习作业:P5-6页 议一议【板书设计】:1.1、你能证明它们吗(一)公理:SAS ASA SSS 推论:AAS 三线合一 对应相等的两个三角形全等。(AAS)【教后记】:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服