ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:1.25MB ,
资源ID:576107      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/576107.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于多维行为分析的窃电高风险客户精准定位方法.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于多维行为分析的窃电高风险客户精准定位方法.pdf

1、广西科学院学报,2 0 2 3年,3 9卷,第2期 J o u r n a l o f G u a n g x i A c a d e m y o f S c i e n c e s,2 0 2 3,V o l.3 9 N o.2收稿日期:2 0 2 2 0 8 1 9 修回日期:2 0 2 2 1 1 1 8【第一作者简介】张远亮(1 9 7 2-),男,高级工程师,主要从事计量管理工作,E m a i l:6 4 3 3 9 6 6 8q q.c o m。【引用本文】张远亮.基于多维行为分析的窃电高风险客户精准定位方法J.广西科学院学报,2 0 2 3,3 9(2):1 9 9 2 0 5

2、.Z HAN G Y L.A c c u r a t e P o s i t i o n i n g M e t h o d o f H i g h r i s k C u s t o m e r s o f E l e c t r i c i t y T h e f t B a s e d o n M u l t i d i m e n s i o n a l B e h a v i o r A n a l y s i s J.J o u r n a l o f G u a n g x i A c a d e m y o f S c i e n c e s,2 0 2 3,3 9(2):1

3、9 9 2 0 5.特邀栏目基于多维行为分析的窃电高风险客户精准定位方法张远亮(广东电网有限责任公司广州供电局,广东广州 5 1 0 6 2 0)摘要:窃电行为对国家电力系统及供电公司造成了极大的损失,故反窃电技术是电力行业的重要研究方向之一。传统的窃电用户定位方法存在定位不准确、查处效率低等问题,为了解决上述问题,提出基于多维行为分析的窃电高风险客户精准定位方法。首先通过相关矩阵R及特征值谱熵正则化完成用户数据去噪,其次在U F S M I模型内提取用户数据特征,分析用户用电的多维行为,最后根据逻辑回归算法完成窃电高风险客户的精确定位。实验结果表明,所提方法的窃电高风险客户定位精准度较高,误

4、判率较低,整体定位效果较好。关键词:多维行为分析;窃电高风险客户;特征提取;数据去噪;精准定位中图分类号:TM 7 6 文献标识码:A 文章编号:1 0 0 2 7 3 7 8(2 0 2 3)0 2 0 1 9 9 0 7D O I:1 0.1 3 6 5 7/j.c n k i.g x k x y x b.2 0 2 3 0 5 1 7.0 1 0 窃电技术的智能化、多样化和专业化给国家电网及供电公司造成了重大经济损失,对反窃电技术的研究有望为国家电网追回经济损失。然而传统窃电高风险客户定位的研究存在定位不精确、查处耗时的问题,因此需要加强窃电高风险客户精准定位的研究,以提高定位的精准度及

5、高效实时性,保证国家的利益及电网的平稳安全运行,这对电力行业的发展具有重要意义1,2。覃华勤等3首先通过动态时间弯曲度量窃电用户的相似性特征,构建相似度矩阵,然后聚类划分窃电高风险客户,并通过簇中心表达,最后在电力系统内通过相似度度量定位出窃电高风险客户。但该方法存在误判率大、定位不精准的问题。蔡嘉辉等4首先构建神经网络结构,其次通过神经网络结构完成用电用户的数据特征提取,最后输入特征至随机森林训练分类器来完成窃电用户的检测。但该方法检测时间长、效率低,实际应用效果不佳。马晓琴等5获取用电用户数据并对其实行降维处理,通过t L e N e t神经网络完成窃电用户的检测。但该方法的窃电用户检测误

6、判率大,检测效果不佳。为了解决上述方法中存在的问题,本文提出基于多维行为分析的窃电高风险客户精准定位方法,通过对用电用户数据去噪处理,提取用户特征,分析窃电用户特征,根据逻辑回归算法实现窃电用户的精准定位。1 用户数据去噪处理 首先用相关矩阵对用电用户数据信息初步去噪,991张远亮.基于多维行为分析的窃电高风险客户精准定位方法再利用 基 于 特 征 值 谱 熵 正 则 化 完 成 最 终 的 去 噪处理6 8。对用电用户数据完成归一化处理。对因电功率序列中的测量误差及用户随机行为引起的噪声干扰,通过相关矩阵R去噪,以提高其准确性。比较随机矩阵中预测与时间序列的不同,可获得实际数据的偏离值,可表

7、达其行为特征。依照分布概率为1,将随机矩阵收放到极限谱中,密度函数如公式(1)所示:J()=E2 2(m a x-)(-m i n),m i nm a x0,e l s e,(1)式(1)中,表示特征值,m i n和m a x分别为特征值的最小值和最大值,E为极限谱分布函数,2为标准方差。因相关矩阵R的半正定实特性,谱分解公式如公式(2)所示:A=I IT,(2)式(2)中,I IT=O,表 示 单 位 矩 阵,=d i a g1,2,3,n ,用来表达测量误差与用户随机用电的噪声。用0表达相关矩阵特征值,以保留真实信息差异,如公式(3)所示:N EW=(T-Tt)+T0,(3)式(3)中,t

8、表示噪声特征值矩阵,0表示由0组成的矩阵。去噪后相关矩阵如公式(4)所示:AN EW=I N EWIT,(4)设置AN EW的对角元素为1,完成相关矩阵的去噪处理。因上述去噪并不是实际噪声的准确估计值,为减小滤波误差,进一步基于特征值谱熵正则化去噪。用谱熵D R度量特征值信息,如公式(5)所示:D R=-1l gMMo=1(o)l g(o)(o)=2(o)Mo=12(o),(5)式(5)中,(o)表示相关矩阵特征值,M表示特征值参数,(o)表示噪声变量。当其他特征值为0且只有一个最大特征值时,谱熵大于0;所有特征值距离相等时,特征值谱熵为最大值。构建正则化特征值f(),如公式(6)所示:f()

9、=-m a x+m i n(1+1D Rl gMo=1l=1Mo=1(o)l g(o)。(6)当f()0时,用0表示其特征值。依此通过正则化公式完成进一步去噪处理。2 用户数据特征提取 因去噪后的用户数据在维度等方面存在一定的差异,为此利用U F S M I模型提取用户行为特征向量9,1 0。U F S M I是一种基于互信息的无监督特征选择模型,属于过滤型特征排序方法。U F S M I模型在多维用户数据特征提取时,首先计算出每个特征的相关度,再使用前向顺序搜索,对特征进行重要性评价,最后输出一个有序特征序列。该模型在应用过程中,分析了用户数据相关度、冗余度和条件熵度量等方面多维特征,因此具

10、有较好的多维用户数据特征提取效果。用条件熵度 量 特 征f的 取 值1 1,如 公 式(7)所示:J(fyfy)=-fy P(fy)fyP(fyfy)l gP(fyfy),(7)式(7)中,fy、fy 均为随机特征,P(fyfy)表示fy条件概率分布对fy 的数学期望。条件熵的两个特征互信息关系如公式(8)所示:O(fy;fy)=J(fy)-J(fyfy)=O(fy;fy),(8)式(8)中,J(fy)表示fy的不确定性,O(fy;fy)表示fy 对fy的不确定性减少的程度。通过步进的方式从特征空集D中选择特征,如公式(9)所示:s c o r e(f)=1MMy=1O(fo;fy)z1=a

11、r g m a x1oms c o r e(f),(9)式(9)中,s c o r e(f)为选择特征,fo为最大相关度特征,O(fo;fy)为fo对fy的不确定性减少的程度,z1为选择特征的集合,m表示第m个用户数据。用整个特征集合的平均互信息表达一个特征的相关度,如公式(1 0)所示:R e l(fo)=1M(J(fo)+1ym,yoR(fo;002广西科学院学报,2 0 2 3年,3 9卷,第2期 J o u r n a l o f G u a n g x i A c a d e m y o f S c i e n c e s,2 0 2 3,V o l.3 9 N o.2fy),(1

12、0)式(1 0)中,R(fo;fy)表示已知特征信息,其值随其他特征信息量的递减而递增。J(fo)为最大相关度特征的不确定性。特征fo对特征hy的相关度如公式(1 1)所示:R e l(hyfo)=J(hyfo)J(fo)R e l(hy),(1 1)式(1 1)中,J(hyfo)表示特征hy对特征fo度量的取值,R e l(hy)表示特征hy的相关度,将两个特征之间的差异用冗余度表示,如公式(1 2)所示:R e d(fo;hy)=R e l(hy)-R e l(hyfo)。(1 2)在选择特征时,全面考虑特征的冗余度及相关度,其重要评价标准(UmRMR)如公式(1 3)所示:UmRMR(f

13、o)=R e l(fo)-m a xhyDR e d(fo;hy)。(1 3)通过公式(7)-(1 3)获取最终的用户特征。3 窃电高风险用户定位 结合引言可知,在窃电高风险用户定位过程中,现有研究主要使用的神经网络方法未考虑到用户的冗余度及相关度特征,造成定位效果较差。为此,本研究在利用U F S M I模型完成用电用户数据特征提取后,依据逻辑回归算法完成窃电用户的定位1 2,1 3,其步骤如下所示。等比例选取用电数据系统中的正常用电用户及窃电用户的数据作为初始数据,将其分为样本集和测试集两部分。定义训练用户数据样本集为C=c1,c2,特征权重向量用表示,其中1,2,数据特征目标函数表示为f

14、()=TC,类别集合用VV1,V2 表示,允 许误差 大 于0,初 始 化 迭 代 次 数为0。迭代求解。迭代求解过程如公式(1 4)所示:l=l+1,(1 4)式(1 4)中,l为迭代次数。用户定位目标函数?g如公式(1 5)所示:?g=czC,V=V1Pz1Pz2czPz1+M-czC,V=V1Pz1czC,V=V1Pz1Pz2cz(czC,V=V1Pz1+M)2,(1 5)式(1 5)中,V表示类别,cz表示z个数据样本,Pz1、Pz2表示实例个数,M表示特征值参数。判断目标函数是否成立,如公式(1 6)所示:?g(l+1)。(1 6)若结果成立,即为最优目标函数,继续执行下一步骤;若不

15、成立,则更新特征权重向量,如公式(1 7)所示:(l+1)=(l)+f(l),(1 7)式(1 7)中,f为特征值。公式(1 7)的特征权重向量更新过程中主要使用粒子群方法。通过粒子在搜索空间的初始化更新结果,找出最佳粒子位置,实现粒子寻优以及特征权重向量更新。根据公式(1 7)的计算结果更新后返回步骤。构建最优化目标函数的窃电用户诊断模型,如公式(1 8)所示:P(V=V1ck)=11+r-rTck,(1 8)式(1 8)中,ck表示测试样本数据,r表示样本矩阵。求解窃电用户诊断模型,并将求解结果与类别比例概率进行对比,分类最终的用户用电数据样本。测试数据集参数,看其是否为窃电用户1 4,1

16、 5;当不满足窃电用户要求时,返回步骤,重新为赋值;满足窃电用户要求时,则进入步骤。完成窃电用户诊断模型构建,输出检测结果。通过上述步骤,完成最终的窃电高风险用户定位检测。4 实验与结果分析 为验证基于多维行为分析的窃电高风险客户精准定位方法的整体有效性,设计以下测试。选用某个省份的真实居民用电用户数据信息及大型企业用电用户数据信息作为实验对象。其中,真实居民正常的用电用户数量为6 0 0户,其中窃电用户数量为9 8户;大型企业正常的用电用户数量为2 4 0户,其中窃电用户数量为5 4户。采用实验环境为W i n d o w s 1 0系统下的S P S S数据分析软件,根据窃电用户诊断模型分

17、析用户数据特征,利用MAT L A B软件模拟居民用户并输出仿真测试结果。根据上文的窃电高风险客户定位过程进行测试,可将测试过程分为模型训练和模型测试两部分,如图1所示。102张远亮.基于多维行为分析的窃电高风险客户精准定位方法图1 窃电高风险客户定位测试流程 F i g.1 P o s i t i o n i n g t e s t p r o c e s s f o r h i g h r i s k c u s t o m e r s o f p o w e r t h e f t 根据上述流程,得到6类居民窃电用户及4类大型企业窃电用户的用电量图,如图2、图3所示。用电量检测。随机选取

18、一段5 0 h的用电数据,采用本文所提方法、覃华勤等3的方法(以下简称方法1)和蔡嘉辉等4的方法(以下简称方法2)完成窃电高风险客户的用电量检测,其结果如图4所示。由图4可知,本文所提方法的居民窃电用户用电量检测结果、大型企业窃电用户用电量检测结果与实际电量趋近一致,所提方法可以检测到电量骤降的现象,如居民窃电用户用电量在1 5、2 5、4 0 h发生了电量骤降现象,企业用电用户电量在2 5 h发生了骤降,之后出现先缓慢下降后上升的趋势。而方法1和方法2的用电量检测存在较大偏差,不能很好地检测出窃电用户用电量,表明本文所提方法对窃电高风险客户的定位检测效果更好。图2 居民窃电用户用电量 F i

19、 g.2 E l e c t r i c i t y c o n s u m p t i o n o f r e s i d e n t i a l u s e r s w i t h e l e c t r i c i t y t h e f t b e h a v i o r图3 大型企业窃电用户用电量 F i g.3 E l e c t r i c i t y c o n s u m p t i o n o f l a r g e e n t e r p r i s e s u s e r s w i t h e l e c t r i c i t y t h e f t b e h a

20、 v i o r202广西科学院学报,2 0 2 3年,3 9卷,第2期 J o u r n a l o f G u a n g x i A c a d e m y o f S c i e n c e s,2 0 2 3,V o l.3 9 N o.2 (a)P o w e r c o n s u m p t i o n d e t e c t i o n o f r e s i d e n t i a l u s e r s w i t h e l e c t r i c i t y t h e f t b e h a v i o r b a s e d o n t h r e e m e

21、t h o d s (b)P o w e r c o n s u m p t i o n d e t e c t i o n o f l a r g e e n t e r p r i s e s u s-e r s w i t h e l e c t r i c i t y t h e f t b e h a v i o r b a s e d o n t h r e e m e t h o d s图4 基于3种方法的两种类型窃电用户用电量检测 F i g.4 P o w e r c o n s u m p t i o n d e t e c t i o n f o r t w o t y

22、p e s o f u s-e r s w i t h e l e c t r i c i t y t h e f t b e h a v i o r b a s e d o n t h r e e m e t h o d s 准确率及误判率。采用本文所提方法、方法1和方法2分别对6 0 0户居民用电用户及2 4 0户企业用电用户的窃电行为进行准确率及误判率测试,如图5所示。由图5可知,对于6 0 0户居民用电用户来说,本文所提方法的准确率高于9 1%,最大值达到9 5%,方法1和方法2的准确率最大值分别为9 0%和8 7%,且本文所提方法、方法1和方法2的误判率分别低于3.8%、4.7%和4

23、.7%。对于2 4 0户企业用电用户来说,本文所提方法的准确率高于9 0.5%,最大值达到9 3.7%,方法1和方法2的准确率最大值分别为9 1%和8 6.5%,且本文所提方法、方法1和方法2误判率分别低于2.3%、3.4%和4.1%。因此,本文所提方法的居民用电用户及大型企业用电用户的准确率均高于方法1和方法2,本文所提方法的两种类型用电用户的误判率均低于方法1和方法2。综上所述,本文所提方法对窃电高风险客户定位的效果更好。主要原因是本文所提方法在传统窃电高风险用户定位的基础上,增加用户去噪处理,降低检测干扰,并且依据逻辑回归算法提高了窃电用户定位的精确度,使所提方法具有良好的实际应用效果及

24、较高的准确率。图5 3种方法的准确率及误判率F i g.5 A c c u r a c y r a t e a n d m i s j u d g m e n t r a t e o f t h r e e m e t h o d s302张远亮.基于多维行为分析的窃电高风险客户精准定位方法5 结论 对窃电用户的查处可为国家电网及供电公司挽回经济损失,并保证供电设备的正常运行。本文提出基于多维行为分析的窃电高风险客户精准定位方法,首先对用户数据进行去噪处理,其次提取用电用户特征,最后完成窃电高风险客户的定位检测。实验结果表明,本文所提方法检测的用电量与实际用电量较为接近,且对用电用户判断的准确

25、率高于两种对比方法,误判率低于两种对比方法。本文所提方法为电力系统的可持续发展奠定了基础,但仍有不足之处,如特征值提取过程计算量较大,希望在今后的研究中能进一步简化特征值提取过程。参考文献1 赵云,肖勇,曾勇刚,等.一种相关性与聚类自适应融合技术窃电检测方法J.南方电网技术,2 0 2 1,1 5(9):6 9 7 4.2 耿俊成,张小斐,周庆捷,等.基于局部离群点检测的低压台 区 用 户 窃 电 识 别 J.电 网 与 清 洁 能 源,2 0 1 9,3 5(1 1):3 0 3 6.3 覃华勤,梁叶,钱奇,等.基于典型窃电用户相似性检索的窃 电 行 为 检 测 方 法 J.电 力 系 统

26、自 动 化,2 0 2 2,4 6(6):5 8 6 5.4 蔡嘉辉,王琨,董康,等.基于D e n s e N e t和随机森林的电力用户窃电检测J.计算机应用,2 0 2 1,4 1(S 1):7 5 8 0.5 马晓琴,薛晓慧,罗红郊,等.基于t L e N e t与时间序列分类的窃电行为检测J.华东师范大学学报(自然科学版),2 0 2 1(5):1 0 4 1 1 4.6 桂团福,邓居智,李广,等.数学形态学和K S V D字典学习在大地电磁数据去噪中的应用J.中国有色金属学报,2 0 2 1,3 1(1 2):3 7 1 3 3 7 2 9.7 甘若,陈天伟,郑旭东,等.改进小波阈

27、值函数在变形监测数据 去 噪中 的应 用J.桂 林 理 工 大 学 学 报,2 0 2 0,4 0(1):1 5 0 1 5 5.8 戚连刚,申振恒,王亚妮,等.基于周期截断数据矩阵奇异值分解的干扰抑制技术J.电子与信息学报,2 0 2 2,4 4(6):2 1 4 3 2 1 5 0.9 张林兵,郭强,吴行斌,等.基于多维行为分析的用户聚类方法研究J.电子科技大学学报,2 0 2 0,4 9(2):3 1 5 3 2 0.1 0 肖丽莎,王红军,杨燕.基于属性依赖的混合约束半监督特征选择J.计算机应用,2 0 1 5,3 5(S 2):8 0 8 4.1 1 林克正,张元铭,李昊天.信息熵加

28、权的HOG特征提取算法研究J.计算机工程与应用,2 0 2 0,5 6(6):1 4 7 1 5 2.1 2 肖弋.一种新的特征变换算法在网络数据安全检查中应用研究J.科技通报,2 0 1 9,3 5(5):1 2 7 1 3 1.1 3 熊熙,乔少杰,韩楠,等.一种基于模糊选项关系的关键属性提取方法J.计算机学报,2 0 1 9,4 2(1):1 9 0 2 0 2.1 4 陈钢,李德英,陈希祥.基于改进X G B o o s t模型的低误报率窃电检测方法J.电力系统保护与控制,2 0 2 1,4 9(2 3):1 7 8 1 8 6.1 5 殷涛,薛阳,杨艺宁,等.基于向量自回归模型的高损

29、线路窃电检测J.中国电机工程学报,2 0 2 2,4 2(3):1 0 1 5 1 0 2 4.A c c u r a t e P o s i t i o n i n g M e t h o d o f H i g h r i s k C u s t o m e r s o f E l e c t r i c-i t y T h e f t B a s e d o n M u l t i d i m e n s i o n a l B e h a v i o r A n a l y s i sZ HANG Y u a n l i a n g(G u a n g d o n g P o w e

30、r G r i d C o.,L t d.,G u a n g z h o u P o w e r S u p p l y B u r e a u,G u a n g z h o u,G u a n g d o n g,5 1 0 6 2 0,C h i n a)A b s t r a c t:E l e c t r i c i t y t h e f t h a s c a u s e d g r e a t l o s s e s t o t h e n a t i o n a l p o w e r s y s t e m a n d p o w e r s u p p l y c o

31、m p a n i e s,s o a n t i e l e c t r i c i t y t h e f t t e c h n o l o g y i s o n e o f t h e i m p o r t a n t r e s e a r c h d i r e c t i o n s i n t h e p o w e r i n d u s t r y.T h e t r a-d i t i o n a l p o s i t i o n i n g m e t h o d o f e l e c t r i c i t y t h e f t u s e r s h a

32、s t h e p r o b l e m s o f i n a c c u r a t e p o s i t i o n i n g a n d l o w e f f i-c i e n c y o f i n v e s t i g a t i o n a n d p u n i s h m e n t.I n o r d e r t o s o l v e t h e a b o v e p r o b l e m s,a n a c c u r a t e p o s i t i o n i n g m e t h o d f o r h i g h r i s k c u s

33、t o m e r s o f e l e c t r i c i t y t h e f t b a s e d o n m u l t i d i m e n s i o n a l b e h a v i o r a n a l y s i s i s p r o p o s e d.F i r s t l y,402广西科学院学报,2 0 2 3年,3 9卷,第2期 J o u r n a l o f G u a n g x i A c a d e m y o f S c i e n c e s,2 0 2 3,V o l.3 9 N o.2t h e u s e r d a t a

34、d e n o i s i n g i s c o m p l e t e d b y t h e c o r r e l a t i o n m a t r i x R a n d t h e e i g e n v a l u e s p e c t r a l e n t r o p y r e g u l a r i-z a t i o n.S e c o n d l y,t h e d a t a c h a r a c t e r i s t i c s o f e l e c t r i c i t y u s e r s a r e e x t r a c t e d i n

35、t h e U F S M I m o d e l,a n d t h e m u l t i d i m e n s i o n a l b e h a v i o r o f e l e c t r i c i t y u s e r s c o n s u m p t i o n i s a n a l y z e d.F i n a l l y,a c c o r d i n g t o t h e l o g i s t i c r e-g r e s s i o n a l g o r i t h m,t h e p r e c i s e p o s i t i o n i n

36、g o f h i g h r i s k c u s t o m e r s f o r e l e c t r i c i t y t h e f t i s c o m p l e t e d.T h e e x-p e r i m e n t a l r e s u l t s s h o w t h a t t h e p r o p o s e d m e t h o d h a s h i g h p o s i t i o n i n g a c c u r a c y f o r h i g h r i s k c u s t o m e r s o f e-l e c t

37、r i c i t y t h e f t,l o w m i s j u d g m e n t r a t e a n d g o o d o v e r a l l p o s i t i o n i n g e f f e c t.K e y w o r d s:m u l t i d i m e n s i o n a l b e h a v i o r a n a l y s i s;h i g h r i s k c u s t o m e r s o f e l e c t r i c i t y t h e f t;f e a t u r e e x t r a c t i o n;d a-t a n o i s e;a c c u r a t e p o s i t i o n i n g责任编辑:梁 晓微信公众号投稿更便捷联系电话:0 7 7 1 2 5 0 3 9 2 3邮箱:g x k x y x b g x a s.c n投稿系统网址:h t t p:/g x k x.i j o u r n a l.c n/g x k x y x b/c h502

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服