ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:358.50KB ,
资源ID:5756332      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5756332.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高三数学高校自主招生考试-真题分类解析5-概率.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高三数学高校自主招生考试-真题分类解析5-概率.doc

1、 年高三数学高校自主招生考试 真题分类解析5 概率一、选择题。1(2009年华中科技大学)从0,1,2,9这十个数码中不放回地随机取n(2n10)个数码,能排成n位偶数的概率记为Pn,则数列PnA.既是等差数列又是等比数列 B.是等比数列但不是等差数列 C.是等差数列但不是等比数列 D.既不是等差数列也不是等比数列2(2009年华中科技大学)5张票中有1张奖票,5个人按照排定的顺序从中各抽1张以决定谁得到其中的奖票,且后抽的人不知道先抽的人抽出的结果,则第3个人抽到奖票的概率是A.B.C.D.3(2009年复旦大学)某种细胞如果不能分裂则死亡,并且一个细胞死亡和分裂为两个细胞的概率都为,现有两

2、个这样的细胞,则两次分裂后还有细胞存活的概率是A.B.C.D.4(2012年复旦大学)随机任取一个正整数,则它的3次方的个位和十位上的数字都是1的概率是A.B.C.D.二、填空题。5(2009年南京大学)有一个1,2,9的排列,现将其重新排列,则1和2不在原来位置的概率是 .三、解答题。6(2010年中南财经政法大学)某市在36位“政协委员”候选人中任选2名,其中来自教育界的候选人共有6人,求:(1)至少有1名来自教育界的人当选的概率是多少?(2)候选人中任何人都有当选的可能性,若选得同性别委员的概率等于,则男女候选人相差几名?(注:男候选人多于女候选人)7(2011年同济大学等九校联考)一袋

3、中有a个白球和b个黑球,从中任取一个球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在进行n次这样的操作后,记袋中白球的个数为Xn.(1)求E;(2)设P(=a+k)=,求P(=a+k),k=0,1,b;(3)证明:EXn+1=(1)EXn+1.8(2009年清华大学)12名职工(其中3名为男性)被平均分配到3个部门.(1)试求3名男员工分配到不同部门的概率;(2)试求3名男员工分配到相同部门的概率;(3)试求1名男员工指定到某一部门,另两名不在同部门的概率.9(2009年清华大学)M为三位的自然数,求:(1)M含因子5的概率; (2)M中恰有两位数码相

4、同的概率.10(2010年清华大学)12个人玩一个游戏,游戏开始后每个人被随机地戴上红、黄、蓝、绿四种颜色之一的帽子,每个人都可以看到其余11个人帽子的颜色,游戏开始后12个人不能再交流,并被要求猜出自己帽子的颜色,请为这12个人在游戏前商定一个方案,使得他们同时猜对自己帽子的颜色的概率尽可能大.11(2010年清华大学等五校联考)假定亲本总体中三种基因型式:AA,Aa,aa的比例为u2vw(u0,v0,w0,u+2v+w=1)且数量充分多,参与交配的亲本是该总体中随机的两个.(1)求子一代的三种基因型式的比例;(2)子二代的三种基因型式的比例与子一代的三种基因型式的比例相同吗?并说明理由.1

5、2(2011年清华大学等七校联考)将一枚均匀的硬币连续抛掷n次,以表示未出现连续三次正面的概率.(1)求、和;(2)探究数列的递推公式,并给出证明(3)讨论数列的单调性及其极限,并阐述该极限的概率意义.13(2012年清华大学等七校联考)系统内有2k1(kN*)个元件,每个元件正常工作的概率为p(0p18)人,则女候选人为36x人,选出两人都是男性的概率为p1=,选出两人都是女性的概率为p2=,+=,x236x+359=0,x=21(x18),男女相差6人 .7.(1) . (2) P(Xn+1=a+k)=pk+pk1(k1).(3)第n次白球个数的数学期望为EXn,由于白球和黑球的总个数为a

6、+b,则将第n+1次白球个数的数学期望分为两类:第n+1次取出来的是白球,这种情况发生的概率是,此时白球的个数为EXn;第n+1次取出来的是黑球,这种情况发生的概率是,此时白球的个数是EXn+1,数的数学期望分为两类:第n+1次取出来的是白球,这种情况发生的概率是,此时白球的个数为EXn;第n+1次取出来的是黑球,这种情况发生的概率是,此时白球的个数是EXn+1,故EXn+1=EXn+(EXn+1)=+(1)(EXn+1)=+EXn+1=(1)EXn+1.8.(1 (2) (3)【解析】(1)P1=;(2)P2=;(3)P3=.9.(1) (2).【解析】(1)当个位数字为0时,有910=90

7、个符合题意的三位数;当个位数字为5时,有910=90个符合题意的三位数,故M含因子5的概率为=.(2)当M中含有数字0,且0是重复数码时,有9个符合题意的三位数;当M中含有数字0,且0不是重复数码时,有9=18个符合题意的三位数;当M中不含数字0时,有983=216个符合题意的三位数,故M中恰有两位数码相同的概率为=.10.12个人同时猜对的概率一定不大于单独一个人猜对的概率,即.【解析】首先将问题数学化,将红、黄、蓝、绿四种颜色分别用数字0、1、2、3代表.策略是每个人将其余11人的帽子的颜色所对应的数字求和,记为S,S除以4的余数设为d,(4d)对应的颜色即为他所猜的颜色.例如,若12个人

8、都戴黄帽子,每个人看到其余11个人的帽子颜色对应数字和均为11,11除以4余3,43=1对应黄色,全都猜对.这样的策略使得同时猜对头上帽子颜色的概率为.当且仅当12个人的帽子颜色所对应数字之和为4的倍数时,12个人能够同时猜对.不然,12个人会同时猜错.这12个人或者同时猜对,或者同时猜错,同时猜对的概率与一个人随机猜测正确的概率相等,为.而多个人猜测时,由于不能由他人的帽子颜色推断出有关自己帽子颜色的信息,因此12个人同时猜对的概率一定不大于单独一个人猜对的概率,即.因此上述方案是最优的.11.(1)AA,Aa,aa的比例为p22pqq2.(2) 相同 可知子二代的基因型式AA,Aa,aa的

9、比例为222,其中=p2+pq,=pq+q2.由p+q=1,可得=p,=q.故子二代的三种基因型式AA,Aa,aa的比例为p22pqq2,与子一代的三种基因型式的比例相同.【解析】(1)参与交配的两个亲本(一个称为父本,一个称为母本)的基因型式的情况,及相应情p1=u21+2uv+2uv+4v2=(u+v)2.由对称性知子一代的基因型式为aa的概率为p3=(v+w)2.子一代的基因型式为Aa的概率为p2=2uv+uw1+2uv+4v2+2vw+uw1+2vw=2(uv+uw+v2+vw)=2(u+v)(v+w).若记p=u+v,q=v+w,则p0,q0,p+q=1,子一代的三种基因型式AA,A

10、a,aa的比例为p22pqq2.(2)由(1)可知子二代的基因型式AA,Aa,aa的比例为222,其中,有pn=pn1pn4(n5).(3)n4时,pn单调递减.又p1=p2p3p4,n2时,数列pn单调递减,且有下界0.pn的极限存在记为a,对pn=pn1pn4两边同时取极限可得a=aa,a=0,故pn=0.其概率意义:当投掷的次数足够多时,不出现连续三次正面的概率非常小.【解析】(1)显然p1=p2=1,p3=1=;又投掷四次出现连续三次正面的情况只有:正正正正或正正正反或反正正正,故p4=1=.(2)共分三种情况:1)如果第n次出现反面,那么前n次不出现连续三次正面和前n1次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是pn1;2)如果第n次出现正面,第n1次出现反面,那么前n次不出现连续三次正面和前n2次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是pn2;增加两个元件时,系统可靠性降低;当p时,Pk+1Pk,函数Pk单调递增,增加两个元件时,系统可靠性提高.【解析】(1)当系统有2k1(kN*)个元件时,恰有k个元件正常工作的概率为pk(1p)k1,恰有k+1个元件正常工作的概率为pk+1(1p)k2,恰有2k1个元件正常工作的概率为p2k1(1p)0,Pk=pk(1p)k1+pk+1(1p)k2+p2k1(1p)010

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服