ImageVerifierCode 换一换
格式:DOC , 页数:77 ,大小:3.67MB ,
资源ID:5756059      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5756059.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(【创新设计-教师用书】(人教A版-理科)2015届高考数学第一轮复习细致讲解练:第五篇-数列.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【创新设计-教师用书】(人教A版-理科)2015届高考数学第一轮复习细致讲解练:第五篇-数列.doc

1、第五篇 数 列A 第1讲 数列的概念与简单表示法 [最新考纲] 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 2.了解数列是自变量为正整数的一类函数. 知 识 梳 理 1.数列的概念 (1)数列的定义 按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第1项,通常也叫做首项. (2)数列的通项公式 如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. (3)数列的前n项和 在数列{an}中,Sn=a1+a2+…+an叫做数列的前n项和. 2.数

2、列的表示方法 (1)表示方法 列表法 列表格表达n与f(n)的对应关系 图象法 把点(n,f(n))画在平面直角坐标系中 公 式 法 通项公式 把数列的通项使用通项公式表达的方法 递推 公式 使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an,an-1)等表达数列的方法 (2)数列的函数特征:上面数列的三种表示方法也是函数的表示方法,数列可以看作是定义域为正整数集(或它的有限子集{1,2,…,n}的函数an=f(n))当自变量由小到大依次取值时所对应的一列函数值. * 3.数列的分类 分类原则 类型 满足条件 按

3、项数分类 有穷数列 项数有限 无穷数列 项数无限 单 调 性 递增数列 an+1>an 其中 n∈N* 递减数列 an+1<an 常数列 an+1=an 摆动数列 从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列 周期性 ∀n∈N*,存在正整数常数k,an+k=an 4.an与Sn的关系 若数列{an}的前n项和为Sn,则an= 辨 析 感 悟 1.对数列概念的认识 (1)数列1,2,3,4,5,6与数列6,5,4,3,2,1表示同一数列.(×) (2)1,1,1,1,…不能构成一个数列.(×) 2.对数列的性质及表示法的

4、理解 (3)(教材练习改编)数列1,0,1,0,1,0,…的通项公式,只能是an=.(×) (4)任何一个数列不是递增数列,就是递减数列.(×) (5)(2013·开封模拟改编)已知Sn=3n+1,则an=2·3n-1.(×) [感悟·提升] 1.一个区别 “数列”与“数集” 数列与数集都是具有某种属性的数的全体,数列中的数是有序的,而数集中的元素是无序的,同一个数在数列中可以重复出现,而数集中的元素是互异的,如(1)、(2). 2.三个防范 一是注意数列不仅有递增、递减数列,还有常数列、摆动数列,如(4). 二是数列的通项公式不唯一,如(3)中还可以表示为an= 三是已知S

5、n求an时,一定要验证n=1的特殊情形,如(5). 学生用书第79页 考点一 由数列的前几项求数列的通项 【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2),,,,,…; (3),2,,8,,…; (4)5,55,555,5 555,…. 解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an=(-1)n(6n-5). (2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,

6、每一项都是两个相邻奇数的乘积.知所求数列的一个通项公式为an=. (3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即,,,,,…,从而可得数列的一个通项公式为an=. (4)将原数列改写为×9,×99,×999,…,易知数列9,99,999,…的通项为10n-1, 故所求的数列的一个通项公式为an=(10n-1). 规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的变化特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 根据下面数列的前几项

7、的值,写出数列的一个通项公式: (1),,-,,-,,…; (2),1,,,…. 解 (1)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-,原数列可化为-,,-,,…,因此可得数列的一个通项公式为an=(-1)n·. (2)将数列统一为,,,,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为bn=2n+1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n2},可得分母的通项公式为cn=n2+1,因此可得数列的一个通项公式为an=. 考点二 由an与Sn的关系求通项an

8、 【例2】 (2013·广东卷节选)设数列{an}的前n项和为Sn.已知a1=1,=an+1-n2-n-,n∈N*. (1)求a2的值; (2)求数列{an}的通项公式. 解 (1)依题意,2S1=a2--1-, 又S1=a1=1,所以a2=4; (2)由题意2Sn=nan+1-n3-n2-n, 所以当n≥2时, 2Sn-1=(n-1)an-(n-1)3-(n-1)2-(n-1) 两式相减得2an=nan+1-(n-1)an-(3n2-3n+1)-(2n-1)-, 整理得(n+1)an-nan+1=-n(n+1), 即-=1,又-=1, 故数列是首项为=1,公差为1的等

9、差数列, 所以=1+(n-1)×1=n,所以an=n2. 规律方法 给出Sn与an的递推关系,求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an. 【训练2】 设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*. (1)求a1的值; (2)求数列{an}的通项公式. 解 (1)令n=1时,T1=2S1-1, ∵T1=S1=a1,∴a1=2a1-1,∴a1=1. (2)n≥2时,Tn-1=2Sn-1-(n-1)2, 则Sn=Tn-

10、Tn-1=2Sn-n2-[2Sn-1-(n-1)2] =2(Sn-Sn-1)-2n+1=2an-2n+1. 因为当n=1时,a1=S1=1也满足上式, 所以Sn=2an-2n+1(n≥1), 当n≥2时,Sn-1=2an-1-2(n-1)+1, 两式相减得an=2an-2an-1-2, 所以an=2an-1+2(n≥2),所以an+2=2(an-1+2), 因为a1+2=3≠0, 所以数列{an+2}是以3为首项,公比为2的等比数列. 所以an+2=3×2n-1,∴an=3×2n-1-2, 当n=1时也成立, 所以an=3×2n-1-2. 学生用书第80页 考点

11、三 由递推公式求数列的通项公式 【例3】 在数列{an}中, (1)若a1=2,an+1=an+n+1,则通项an=________; (2)若a1=1,an+1=3an+2,则通项an=________. 审题路线 (1)变形为an+1-an=n+1⇒用累加法,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)⇒得出an. (2)变形为an+1+1=3(an+1)⇒再变形为=⇒用累乘法或迭代法可求an. 解析 (1)由题意得,当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+(2+3+…+n)=2+=+1. 又a1=2=+1,

12、符合上式, 因此an=+1. (2)an+1=3an+2,即an+1+1=3(an+1),即=3, 法一 =3,=3,=3,…,=3.将这些等式两边分别相乘得=3n. 因为a1=1,所以=3n,即an+1=2×3n-1(n≥1),所以an=2×3n-1-1(n≥2),又a1=1也满足上式,故an=2×3n-1-1. 法二 由=3,即an+1+1=3(an+1), 当n≥2时,an+1=3(an-1+1), ∴an+1=3(an-1+1)=32(an-2+1)=33(an-3+1)=…=3n-1(a1+1)=2×3n-1, ∴an=2×3n-1-1; 当n=1时,a1=1=2×

13、31-1-1也满足. ∴an=2×3n-1-1. 答案 (1)+1 (2)2×3n-1-1 规律方法 数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项. 【训练3】 设{an}是首项为1的正项数列,且(n+1)a-na+an+1·an=0(n=1,2,3,…),则它的通项公式an=________. 解析 ∵(n+1)a+an+1·an-na=0, ∴(an+1+an

14、)[(n+1)an+1-nan]=0, 又an+1+an>0,∴(n+1)an+1-nan=0, 即=,∴····…·=××××…×,∴an=. 答案    1.求数列通项或指定项,通常用观察法(对于交错数列一般用(-1)n或(-1)n+1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法. 2.由Sn求an时,an=注意验证a1是否包含在后面an的公式中,若不符合要单独列出,一般已知条件含an与Sn的关系的数列题均可考虑上述公式. 3.已知递推

15、关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有三种常见思路: (1)算出前几项,再归纳、猜想; (2)“an+1=pan+q”这种形式通常转化为an+1+λ=p(an+λ),由待定系数法求出λ,再化为等比数列; (3)利用累加、累乘法或迭代法可求数列的通项公式.                  思想方法4——用函数的思想解决数列问题 【典例】 (2013·新课标全国Ⅱ卷)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________. 解析 由题意及等差数列的性质, 知a1+a10=0,a1+a15=. 两式相减,得

16、a15-a10==5d,所以d=,a1=-3. 所以nSn=n·[na1+d]=. 令f(x)=,x>0, 则f′(x)=x(3x-20),由函数的单调性,可知函数f(x)在x=时取得最小值,检验n=6时,6S6=-48,而n=7时,7S7=-49,故nSn的最小值为-49. 答案 -49 [反思感悟] (1)本题求出的nSn的表达式可以看做是一个定义在正整数集N*上的三次函数,因此可以采用导数法求解. (2)易错分析:由于n为正整数,因而不能将代入求最值,这是考生容易忽略而产生错误的地方. 【自主体验】 1.设an=-3n2+15n-18,则数列{an}中的最大项的值是 (

17、  ). A. B. C.4 D.0 解析 ∵an=-32+,由二次函数性质,得当n=2或3时,an最大,最大为0. 答案 D 2.已知{an}是递增数列,且对于任意的n∈N*,an=n2+λn恒成立,则实数λ的取值范围是________. 解析 设f(n)=an=n2+λn,其图象的对称轴为直线n=-,要使数列{an}为递增数列,只需使定义在正整数上的函数f(n)为增函数,故只需满足-<,即λ>-3. 答案 (-3,+∞) 对应学生用书P285 基础巩固题组 (建议用时:40分钟) 一、选择题 1.(2014·深圳中学模拟)数列0,,,,…的一个通项公

18、式为(  ). A.an=(n∈N*) B.an=(n∈N*) C.an=(n∈N*) D.an=(n∈N*) 解析 将0写成,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*,故选C. 答案 C 2.若Sn为数列{an}的前n项和,且Sn=,则=(  ). A. B. C. D.30 解析 当n≥2时,an=Sn-Sn-1=-=,∴=5×(5+1)=30. 答案 D 3.(2014·贵阳模拟)已知数列{an}的前n项和为Sn,且S

19、n=2n2-1,则a3=(  ). A.-10 B.6 C.10 D.14 解析 a3=S3-S2=2×32-1-(2×22-1)=10. 答案 C 4.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是(  ). A.2n-1 B.n-1 C.n2 D.n 解析 法一 (构造法)由已知整理得(n+1)an=nan+1, ∴=,∴数列是常数列. 且==1,∴an=n. 法二 (累乘法):n≥2时,=,=. … =,=, 两边分别相乘得=n,又因为a1=1,∴an=n. 答案 D 5.已知数列{an}的前n项和为Sn,a1=1

20、Sn=2an+1,则Sn=(  ). A.2n-1 B.n-1 C.n-1 D. 解析 ∵Sn=2an+1,∴当n≥2时,Sn-1=2an, ∴an=Sn-Sn-1=2an+1-2an(n≥2), 即=(n≥2), 又a2=,∴an=×n-2(n≥2). 当n=1时,a1=1≠×-1=, ∴an= ∴Sn=2an+1=2××n-1=n-1. 答案 B 二、填空题 6.(2013·蚌埠模拟)数列{an}的通项公式an=-n2+10n+11,则该数列前________项的和最大. 解析 易知a1=20>0,显然要想使和最大,则应把所有的非

21、负项求和即可,令an≥0,则-n2+10n+11≥0,∴-1≤n≤11,可见,当n=11时,a11=0,故a10是最后一个正项,a11=0,故前10或11项和最大. 答案 10或11 7.(2014·广州模拟)设数列{an}满足a1+3a2+32a3+…+3n-1an=,则数列{an}的通项公式为________. 解析 ∵a1+3a2+32a3+…+3n-1an=,则当n≥2时,a1+3a2+32a3+…+3n-2an-1=,两式左右两边分别相减得3n-1an=,∴an=(n≥2).由题意知,a1=,符合上式,∴an=(n∈N*). 答案 an= 8.(2013·淄博二模)在如图所

22、示的数阵中,第9行的第2个数为________. 解析 每行的第二个数构成一个数列{an},由题意知a2=3,a3=6,a4=11,a5=18,所以a3-a2=3,a4-a3=5,a5-a4=7,…, an-an-1=2(n-1)-1=2n-3,等式两边同时相加得 an-a2==n2-2n, 所以an=n2-2n+a2=n2-2n+3(n≥2),所以a9=92-2×9+3=66. 答案 66 三、解答题 9.数列{an}的通项公式是an=n2-7n+6. (1)这个数列的第4项是多少? (2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项

23、开始各项都是正数? 解 (1)当n=4时,a4=42-4×7+6=-6. (2)令an=150,即n2-7n+6=150, 解得n=16或n=-9(舍去),即150是这个数列的第16项. (3)令an=n2-7n+6>0,解得n>6或n<1(舍). ∴从第7项起各项都是正数. 10.在数列{an}中,a1=1,Sn为其前n项和,且an+1=2Sn+n2-n+1. (1)设bn=an+1-an,求数列{bn}的前n项和Tn; (2)求数列{an}的通项公式. 解 (1)∵an+1=2Sn+n2-n+1, ∴an=2Sn-1+(n-1)2-(n-1)+1(n≥2), 两式相减

24、得,an+1-an=2an+2n-2(n≥2). 由已知可得a2=3, ∴n=1时上式也成立. ∴an+1-3an=2n-2(n∈N*),an-3an-1=2(n-1)-2(n≥2). 两式相减,得(an+1-an)-3(an-an-1)=2(n≥2). ∵bn=an+1-an, ∴bn-3bn-1=2(n≥2), bn+1=3(bn-1+1)(n≥2). ∵b1+1=3≠0, ∴{bn+1}是以3为公比,3为首项的等比数列, ∴bn+1=3×3n-1=3n, ∴bn=3n-1. ∴Tn=31+32+…+3n-n=·3n+1-n-. (2)由(1)知,an+1-an=

25、3n-1, ∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a3-a2)+(a2-a1)+a1 =30+31+32+…+3n-1-(n-1)=(3n+1)-n. 能力提升题组 (建议用时:25分钟) 一、选择题 1.已知数列{an}的通项公式为an=,则满足an+1<an的n的取值为(  ). A.3 B.4 C.5 D.6 解析 由an+1<an,得an+1-an=-=<0,解得<n<,又n∈N*,∴n=5. 答案 C 2.(2014·湖州模拟)设函数f(x)=数列{an}满足an=f(n),n∈N*,且数列{an}是递增数列,

26、则实数a的取值范围是(  ). A. B. C.(1,3) D.(2,3) 解析 ∵数列{an}是递增数列,又an=f(n)(n∈N*), ∴⇒2

27、×(1+2+4)=28. 答案 28 三、解答题 4.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*. (1)设bn=Sn-3n,求数列{bn}的通项公式; (2)若an+1≥an,n∈N*,求a的取值范围. 解 (1)依题意,Sn+1-Sn=an+1=Sn+3n, 即Sn+1=2Sn+3n, 由此得Sn+1-3n+1=2(Sn-3n), 又S1-31=a-3(a≠3),故数列{Sn-3n}是首项为a-3,公比为2的等比数列, 因此,所求通项公式为bn=Sn-3n=(a-3)2n-1,n∈N*. (2)由(1)知Sn=3n+(a-3

28、)2n-1,n∈N*, 于是,当n≥2时,an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2, 当n=1时,a1=a不适合上式, 故an= an+1-an=4×3n-1+(a-3)2n-2 =2n-2, 当n≥2时,an+1≥an⇔12·n-2+a-3≥0⇔a≥-9. 又a2=a1+3>a1. 综上,所求的a的取值范围是[-9,+∞). 学生用书第81页 第2讲 等差数列及其前n项和 [最新考纲] 1.理解等差数列的概念. 2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境

29、中识别数列的等差关系,并能用有关知识解决相应的问题. 4.了解等差数列与一次函数、二次函数的关系. 知 识 梳 理 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示. 数学语言表达式:an+1-an=d(n∈N*),d为常数. 2.等差数列的通项公式与前n项和公式 (1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 若等差数列{an}的第m项为am,则其第n项an可以表示为an=am+(n-m)d. (2)等差数列的前n项

30、和公式 Sn==na1+d.(其中n∈N*,a1为首项,d为公差,an为第n项) 3.等差数列及前n项和的性质 (1)若a,A,b成等差数列,则A叫做a,b的等差中项,且A=. (2)若{an}为等差数列,当m+n=p+q,am+an=ap+aq(m,n,p,q∈N*). (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列. (5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=; 若n为奇数,则S奇-S偶=a中(中间项). 4.等差数列

31、与函数的关系 (1)等差数列与一次函数的区别与联系 等差数列 一次函数 解析式 an=kn+b(n∈N*) f(x)=kx+b(k≠0) 不同点 定义域为N*,图象是一系列孤立的点(在直线上),k为公差 定义域为R,图象是一条直线,k为斜率 相同点 数列的通项公式与函数解析式都是关于自变量的一次函数.①k≠0时,数列an=kn+b(n∈N*)图象所表示的点均匀分布在函数f(x)=kx+b(k≠0)的图象上;②k>0时,数列为递增数列,函数为增函数;③k<0时,数列为递减数列,函数为减函数 (2)等差数列前n项和公式可变形为Sn=n2+n,当d≠0时,它是关于n的二次

32、函数,它的图象是抛物线y=x2+x上横坐标为正整数的均匀分布的一群孤立的点. 辨 析 感 悟 1.对等差数列概念的理解 (1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×) (2)等差数列的公差是相邻两项的差.(×) (3)(教材习题改编)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.(×) 2.等差数列的通项公式与前n项和 (4)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.(√) (5)等差数列{an}的单调性是由公差d决定的.(√) (6)等差数列的前n项和公式是常数项为0的二次函数.(

33、×) 3.等差数列性质的活用 (7)(2013·广东卷改编)在等差数列{an}中,已知a3+a8=10,则3a5+a7=20.(√) (8)(2013·辽宁卷改编)已知关于d>0的等差数列{an},则数列{an},{nan},,{an+3nd}都是递增数列.(×) [感悟·提升] 一点注意 等差数列概念中的“从第2项起”与“同一个常数”的重要性,如(1)、(2). 等差数列与函数的区别 一是当公差d≠0时,等差数列的通项公式是n的一次函数,当公差d=0时,an为常数,如(3);二是公差不为0的等差数列的前n项和公式是n的二次函数,且常数项为0;三是等差数列{an}的单调性是由公差d

34、决定的,如(8)中若an=3n-12,则满足已知,但nan=3n2-12n并非递增;若an=n+1,则满足已知,但=1+是递减数列;设an=a1+(n-1)d=dn+m,则an+3nd=4dn+m是递增数列. 学生用书第82页 考点一 等差数列的基本量的求解 【例1】 在等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式; (2)若数列{an}的前k项和Sk=-35,求k的值. 解 (1)设等差数列{an}的公差为d,则an=a1+(n-1)d. 由a1=1,a3=-3,可得1+2d=-3. 解得d=-2.从而,an=1+(n-1)×(-2)=3-

35、2n. (2)由(1)可知an=3-2n. 所以Sn==2n-n2. 进而由Sk=-35可得2k-k2=-35. 即k2-2k-35=0,解得k=7或-5. 又k∈N*,故k=7为所求. 规律方法 (1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题. (2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 【训练1】 (1)(2013·浙江五校联考)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S1

36、0=(  ). A.85 B.135 C.95 D.23 (2)(2013·新课标全国Ⅰ卷)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=(  ). A.3 B.4 C.5 D.6 解析 (1)设等差数列{an}的首项为a1,公差为d, 则解得 ∴S10=10×(-4)+×3=95. (2)法一 ∵Sm-1=-2,Sm=0,Sm+1=3, ∴am=Sm-Sm-1=2,am+1=Sm+1-Sm=3, ∴公差d=am+1-am=1,由Sn=na1+d=na1+, 得

37、 由①得a1=,代入②可得m=5. 法二 ∵数列{an}为等差数列,且前n项和为Sn, ∴数列也为等差数列. ∴+=,即+=0, 解得m=5.经检验为原方程的解.故选C. 答案 (1)C (2)C 考点二 等差数列的判定与证明 【例2】 (2014·梅州调研改编)若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=. (1)求证:成等差数列; (2)求数列{an}的通项公式. 审题路线 (1)利用an=Sn-Sn-1(n≥2)转化为关于Sn与Sn-1的式子⇒同除Sn·Sn-1⇒利用定义证明⇒得出结论. (2)由(1)求⇒再求Sn⇒再代入条件

38、an=-2SnSn-1,求an⇒验证n=1的情况⇒得出结论. (1)证明 当n≥2时,由an+2SnSn-1=0, 得Sn-Sn-1=-2SnSn-1,所以-=2, 又==2,故是首项为2,公差为2的等差数列. (2)解 由(1)可得=2n,∴Sn=. 当n≥2时, an=Sn-Sn-1=-==-. 当n=1时,a1=不适合上式. 故an= 规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an-an-1=d(n≥2,d为常数);二是等差中项法,证明2an+1=an+an+2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法. 【训练2】

39、已知数列{an}满足:a1=2,an+1=3an+3n+1-2n. 设bn=.证明:数列{bn}为等差数列,并求{an}的通项公式. 证明 ∵bn+1-bn=-=-=1, ∴{bn}为等差数列,又b1==0. ∴bn=n-1,∴an=(n-1)·3n+2n. 学生用书第83页 考点三 等差数列的性质及应用 【例3】 (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=(  ). A.-6 B.-4 C.-2 D.2 (2)在等差数列{an}中,前m项的和为30,前2m项的和为100,则前3m项的和为________. 解析 (1)S8=4a3

40、⇒=4a3⇒a3+a6=a3,∴a6=0,∴d=-2,∴a9=a7+2d=-2-4=-6. (2)记数列{an}的前n项和为Sn,由等差数列前n项和的性质知Sm,S2m-Sm,S3m-S2m成等差数列,则2(S2m-Sm)=Sm+(S3m-S2m),又Sm=30,S2m=100,S2m-Sm=100-30=70,所以S3m-S2m=2(S2m-Sm)-Sm=110,所以S3m=110+100=210. 答案 (1)A (2)210 规律方法 巧妙运用等差数列的性质,可化繁为简;若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶数个数成等差数列且和为定值时,可设中间两

41、项为a -d,a+d,其余各项再依据等差数列的定义进行对称设元. 【训练3】 (1)在等差数列{an}中.若共有n项,且前四项之和为21,后四项之和为67,前n项和Sn=286,则n=________. (2)已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 解析 (1)依题意知a1+a2+a3+a4=21,an+an-1+an-2+an-3=67. 由等差数列的性质知a1+an=a2+an-1=a3+an-2=a4+an-3,∴4(a1+an)=88,∴a1+an=22. 又Sn=,即286=,∴n=26. (2)∵{an}为等差数列, ∴S

42、3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6). ∴a7+a8+a9=S9-S6 =2(S6-S3)-S3 =2(36-9)-9=45. 答案 (1)26 (2)45    1.等差数列的判断方法 (1)定义法:an+1-an=d(d是常数)⇔{an}是等差数列. (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列. (3)通项公式:an=pn+q(p,q为常数)⇔{an}是等差数列. (4)前n项和公式:Sn=An2+Bn(A、B为常数

43、)⇔{an}是等差数列. 2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a1和d等基本量,通过建立方程(组)获得解.                 方法优化4——整体代入法(整体相消法)在数列解题中的应用 【典例】 (1)(2012·辽宁卷)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=(  ). A.58 B.88 C.143 D.176 (2)(2013·北京卷)若等比数列{an}满足:a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=__

44、 [一般解法] (1)设数列{an}的公差为d,则a4+a8=16,即a1+3d+a1+7d=16,即a1=8-5d,所以S11=11a1+d=11(8-5d)+55d=88-55d+55d=88. (2)由a2+a4=20,a3+a5=40,得 即 解得q=2,a1=2, ∴Sn===2n+1-2. [优美解法] (1)由a1+a11=a4+a8=16,得 S11====88. (2)由已知,得==q=2, 又a1=2,所以Sn==2n+1-2. [反思感悟] 整体代入法是一种重要的解题方法和技巧,简化了解题过程,节省了时间,这就要求学生要掌握公式,理解其结

45、构特征. 【自主体验】 在等差数列{an}中,已知Sn=m,Sm=n(m≠n),则Sm+n=________. 解析 设{an}的公差为d,则由Sn=m,Sm=n, 得 ②-①得(m-n)a1+·d=n-m, ∵m≠n,∴a1+d=-1. ∴Sm+n=(m+n)a1+d =(m+n)=-(m+n). 答案 -(m+n) 对应学生用书P287 基础巩固题组 (建议用时:40分钟) 一、选择题 1.(2013·温州二模)记Sn为等差数列{an}前n项和,若-=1,则其公差d=(  ). A. B.2 C.3 D.4

46、 解析 由-=1,得-=1, 即a1+d-=1,∴d=2. 答案 B 2.(2014·潍坊期末考试)在等差数列{an}中,a5+a6+a7=15,那么a3+a4+…+a9等于(  ). A.21 B.30 C.35 D.40 解析 由题意得3a6=15,a6=5.所以a3+a4+…+a9=7a6=7×5=35. 答案 C 3.(2013·揭阳二模)在等差数列{an}中,首项a1=0,公差d≠0,若am=a1+a2+…+a9,则m的值为(  ). A.37 B.36 C.20 D.19 解析 由am=a1+a2+…+a9,得(m-1)d

47、=9a5=36d⇒m=37. 答案 A 4.(2014·郑州模拟){an}为等差数列,Sn为其前n项和,已知a7=5,S7=21,则S10=(  ). A.40 B.35 C.30 D.28 解析 设公差为d,则由已知得S7=,即21=,解得a1=1,所以a7=a1+6d,所以d=.所以S10=10a1+d=10+×=40. 答案 A 5.(2013·淄博二模)已知等差数列{an}的前n项和为Sn,满足a13=S13=13,则a1=(  ). A.-14 B.-13 C.-12 D.-11 解析 在等差数列中,S13==13,所以a1+a13=2,即a1=2-a

48、13=2-13=-11. 答案 D 二、填空题 6.(2013·肇庆二模)在等差数列{an}中,a15=33,a25=66,则a35=________. 解析 a25-a15=10d=66-33=33,∴a35=a25+10d=66+33=99. 答案 99 7.(2014·成都模拟)已知等差数列{an}的首项a1=1,前三项之和S3=9,则{an}的通项an=________. 解析 由a1=1,S3=9,得a1+a2+a3=9,即3a1+3d=9,解得d=2,∴an=1+(n-1)×2=2n-1. 答案 2n-1 8.(2013·浙江五校联考)若等差数列{an}的前n项和

49、为Sn(n∈N*),若a2∶a3=5∶2,则S3∶S5=________. 解析 ===×=. 答案 3∶2 三、解答题 9.已知等差数列{an}的公差d=1,前n项和为Sn. (1)若1,a1,a3成等比数列,求a1; (2)若S5>a1a9,求a1的取值范围. 解 (1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,所以a=1×(a1+2),即a-a1-2=0,解得a1=-1或2. (2)因为数列{an}的公差d=1,且S5>a1a9,所以5a1+10>a+8a1,即a+3a1-10<0,解得-5<a1<2. 故a1的取值范围是(-5,2). 10.设数列{

50、an}的前n项和为Sn,a1=1,an=+2(n-1)(n∈N*). (1)求证:数列{an}为等差数列,并求an与Sn. (2)是否存在自然数n,使得S1+++…+-(n-1)2=2 015?若存在,求出n的值;若不存在,请说明理由. 证明 (1)由an=+2(n-1),得Sn=nan-2n(n-1)(n∈N*). 当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1), 即an-an-1=4, 故数列{an}是以1为首项,4为公差的等差数列. 于是,an=4n-3,Sn==2n2-n(n∈N*). (2)由(1),得=2n-1(n∈N*), 又S1++

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服