ImageVerifierCode 换一换
格式:DOC , 页数:70 ,大小:292KB ,
资源ID:5755589      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5755589.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(中科院博士研究生英语精读教材翻译及原文整理.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中科院博士研究生英语精读教材翻译及原文整理.doc

1、第1课 知识的悖论 The Paradox of Knowledge The greatest achievement of humankind in its long evolution from ancient hominoid ancestors to its present status is the acquisition and accumulation of a vast body of knowledge about itself, the world, and the universe. The products of this knowledge are all thos

2、e things that, in the aggregate, we call "civilization," including language, science, literature, art, all the physical mechanisms, instruments, and structures we use, and the physical infrastructures on which society relies. Most of us assume that in modern society knowledge of all kinds is continu

3、ally increasing and the aggregation of new information into the corpus of our social or collective knowledge is steadily reducing the area of ignorance about ourselves, the world, and the universe. But continuing reminders of the numerous areas of our present ignorance invite a critical analysis of

4、this assumption. In the popular view, intellectual evolution is similar to, although much more rapid than, somatic evolution. Biological evolution is often described by the statement that "ontogeny recapitulates phylogeny"--meaning that the individual embryo, in its development from a fertilized ov

5、um into a human baby, passes through successive stages in which it resembles ancestral forms of the human species. The popular view is that humankind has progressed from a state of innocent ignorance, comparable to that of an infant, and gradually has acquired more and more knowledge, much as a chil

6、d learns in passing through the several grades of the educational system. Implicit in this view is an assumption that phylogeny resembles ontogeny, so that there will ultimately be a stage in which the accumulation of knowledge is essentially complete, at least in specific fields, as if society had

7、graduated with all the advanced degrees that signify mastery of important subjects. Such views have, in fact, been expressed by some eminent scientists. In 1894 the great American physicist Albert Michelson said in a talk at the University of Chicago: While it is never safe to affirm that the futu

8、re of Physical Science has no marvels in store even more astonishing than those of the past, it seems probable that most of the grand underlying principles have been firmly established and that further advances are to be sought chiefly in the rigorous application of these principles to all the pheno

9、mena which come under our notice .... The future truths of Physical Science ate to be looked for in the sixth place of decimals. In the century since Michelson's talk, scientists have discovered much more than the refinement of measurements in the sixth decimal place, and none is willing to make a

10、similar statement today. However, many still cling to the notion that such a state of knowledge remains a possibility to be attained sooner or later. Stephen Hawking, the great English scientist, in his immensely popular book A Brief History of Time (1988), concludes with the speculation that we may

11、 "discover a complete theory" that "would be the ultimate triumph of human reason--for then we would know the mind of God." Paul Davies, an Australian physicist, echoes that view by suggesting that the human mind may be able to grasp some of the secrets encompassed by the title of his book The Mind

12、of God (1992). Other contemporary scientists write of "theories of everything," meaning theories that explain all observable physical phenomena, and Nobel Laureate Steven Weinberg, one of the founders of the current standard model of physical theory, writes of his Dreams of a Final Theory (1992). D

13、espite the eminence and obvious yearning of these and many other contemporary scientists, there is nothing in the history of science to suggest that any addition of data or theories to the body of scientific knowledge will ever provide answers to all questions in any field. On the contrary, the hist

14、ory of science indicates that increasing knowledge brings awareness of new areas of ignorance and of new questions to be answered. Astronomy is the most ancient of the sciences, and its development is a model of other fields of knowledge. People have been observing the stars and other celestial bod

15、ies since the dawn of recorded history. As early as 3000 B.C. the Babylonians recognized a number of the constellations. In the sixth century B.C., Pythagoras proposed the notion of a spherical Earth and of a universe with objects in it chat moved in accordance with natural laws. Later Greek philoso

16、phers taught that the sky was a hollow globe surrounding the Earth, that it was supported on an axis running through the Earth, and chat stars were inlaid on its inner surface, which rotated westward daily. In the second century A.D., Ptolemy propounded a theory of a geocentric (Earth-centered) univ

17、erse in which the sun, planets, and stars moved in circular orbits of cycles and epicycles around the Earth, although the Earth was not at the precise center of these orbits. While somewhat awkward, the Ptolemaic system could produce reasonably reliable predictions of planetary positions, which were

18、 however, good for only a few years and which developed substantial discrepancies from actual observations over a long period of time. Nevertheless, since there was no evidence then apparent to astronomers that the Earth itself moves, the Ptolemaic system remained unchallenged for more than 13 cent

19、uries. In the sixteenth century Nocolaus Copernicus, who is said to have mastered all the knowledge of his day in mathematics, astronomy, medicine, and theology, became dissatisfied with the Ptolemaic system. He found that a heliocentric system was both mathematically possible and aesthetically mor

20、e pleasing, and wrote a full exposition of his hypothesis, which was not published until 1543, shortly after his death. Early in the seventeenth century, Johannes Kepler became imperial mathematician of the Holy Roman Empire upon the death of Tycho Brahe, and he acquired a collection of meticulous n

21、aked-eye observations of the positions of celestial bodies chat had been made by Brahe. On the basis of these data, Kepler calculated that both Ptolemy and Copernicus were in error in assuming chat planets traveled in circular orbits, and in 1609 he published a book demonstrating mathematically chat

22、 the planets travel around the sun in elliptical orbits. Kepler's laws of planetary motion are still regarded as basically valid. In the first decade of the seventeenth century Galileo Galilei learned of the invention of the telescope and began to build such instruments, becoming the first person t

23、o use a telescope for astronomical observations, and thus discovering craters on the moon, phases of Venus, and the satellites of Jupiter. His observations convinced him of the validity of the Copernican system and resulted in the well-known conflict between Galileo and church authorities. In Januar

24、y 1642 Galileo died, and in December of chat year Isaac Newton was born. Modern science derives largely from the work of these two men. Newton's contributions to science are numerous. He laid the foundations for modem physical optics, formulated the basic laws of motion and the law of universal gra

25、vitation, and devised the infinitesimal calculus. Newton's laws of motion and gravitation are still used for calculations of such matters as trajectories of spacecraft and satellites and orbits of planets. In 1846, relying on such calculations as a guide to observation, astronomers discovered the pl

26、anet Neptune. While calculations based on Newton's laws are accurate, they are dismayingly complex when three or more bodies are involved. In 1915, Einstein announced his theory of general relativity, which led to a set of differential equations for planetary orbits identical to those based on Newt

27、onian calculations, except for those relating to the planet Mercury. The elliptical orbit of Mercury rotates through the years, but so slowly that the change of position is less than one minute of arc each century. The equations of general relativity precisely accounted for this precession; Newtonia

28、n equations did not. Einstein's equations also explained the red shift in the light from distant stars and the deflection of starlight as it passed near the sun. However, Einstein assumed chat the universe was static, and, in order to permit a meaningful solution to the equations of relativity, in

29、1917 he added another term, called a "cosmological constant," to the equations. Although the existence and significance of a cosmological constant is still being debated, Einstein later declared chat this was a major mistake, as Edwin Hubble established in the 1920s chat the universe is expanding an

30、d galaxies are receding from one another at a speed proportionate to their distance. Another important development in astronomy grew out of Newton's experimentation in optics, beginning with his demonstration chat sunlight could be broken up by a prism into a spectrum of different colors, which led

31、 to the science of spectroscopy. In the twentieth century, spectroscopy was applied to astronomy to gun information about the chemical and physical condition of celestial bodies chat was not disclosed by visual observation. In the 1920s, precise photographic photometry was introduced to astronomy an

32、d quantitative spectrochemical analysis became common. Also during the 1920s, scientists like Heisenberg, de Broglie, Schrodinger, and Dirac developed quantum mechanics, a branch of physics dealing with subatomic particles of matter and quanta of energy. Astronomers began to recognize that the prope

33、rties of celestial bodies, including planets, could be well understood only in terms of physics, and the field began to be referred to as "astrophysics." These developments created an explosive expansion in our knowledge of astronomy. During the first five thousand years or more of observing the he

34、avens, observation was confined to the narrow band of visible light. In the last half of this century astronomical observations have been made across the spectrum of electromagnetic radiation, including radio waves, infrared, ultraviolet, X-rays, and gamma rays, and from satellites beyond the atmosp

35、here. It is no exaggeration to say chat since the end of World War II more astronomical data have been gathered than during all of the thousands of years of preceding human history. However, despite all improvements in instrumentation, increasing sophistication of analysis and calculation augmented

36、 by the massive power of computers, and the huge aggregation of data, or knowledge, we still cannot predict future movements of planets and other elements of even the solar system with a high degree of certainty. Ivars Peterson, a highly trained science writer and an editor of Science News, writes i

37、n his book Newton's Clock (1993) that a surprisingly subtle chaos pervades the solar system. He states: In one way or another the problem of the solar system's stability has fascinated and tormented asrtonomers and mathematicians for more than 200 years. Somewhat to the embarrassment of contemporar

38、y experts, it remains one of the most perplexing, unsolved issues in celestial mechanics. Each step toward resolving this and related questions has only exposed additional uncertainties and even deeper mysteries. Similar problems pervade astronomy. The two major theories of cosmology, general relat

39、ivity and quantum mechanics, cannot be stated in the same mathematical language, and thus are inconsistent with one another, as the Ptolemaic and Copernican theories were in the sixteenth century, although both contemporary theories continue to be used, but for different calculations. Oxford mathema

40、tician Roger Penrose, in The Emperors New Mind (1989), contends that this inconsistency requires a change in quantum theory to provide a new theory he calls "correct quantum gravity." Furthermore, the observations astronomers make with new technologies disclose a total mass in the universe that is

41、less than about 10 percent of the total mass that mathematical calculations require the universe to contain on the basis of its observed rate of expansion. If the universe contains no more mass than we have been able to observe directly, then according to all current theories it should have expanded

42、 in the past, and be expanding now, much more rapidly than the rate actually observed. It is therefore believed that 90 percent or more of the mass in the universe is some sort of "dark matter" that has not yet been observed and the nature of which is unknown. Current theories favor either WIMPs (we

43、akly interacting massive particles) or MACHOs (massive compact halo objects). Other similar mysteries abound and increase in number as our ability to observe improves. The progress of biological and life sciences has been similar to that of the physical sciences, except that it has occurred several

44、 centuries later. The theory of biological evolution first came to the attention of scientists with the publication of Darwin's Origin of Species in 1859. But Darwin lacked any explanation of the causes of variation and inheritance of characteristics. These were provided by Gregor Mendel, who laid t

45、he mathematical foundation of genetics with the publication of papers in 1865 and 1866. Medicine, according to Lewis Thomas, is the youngest science, having become truly scientific only in the 1930s. Recent and ongoing research has created uncertainty about even such basic concepts as when and how

46、life begins and when death occurs, and we are spending billions in an attempt to learn how much it may be possible to know about human genetics. Modern medicine has demonstrably improved both our life expectancies and our health, and further improvements continue to be made as research progresses. B

47、ut new questions arise even more rapidly than our research resources grow, as the host of problems related to the Human Genome Project illustrates. From even such an abbreviated and incomplete survey of science as this, it appears that increasing knowledge does not result in a commensurate decrease

48、 in ignorance, but, on the contrary, exposes new lacunae in our comprehension and confronts us with unforeseen questions disclosing areas of ignorance of which we were not previously aware. Thus the concept of science as an expanding body of knowledge that will eventually encompass or dispel all si

49、gnificant areas of ignorance is an illusion. Scientists and philosophers are now observing that it is naive to regard science as a process that begins with observations that are organized into theories and are then subsequently tested by experiments. The late Karl Popper, a leading philosopher of sc

50、ience, wrote in The Growth of Scientific Knowledge (1960) chat science starts from problems, not from observations, and chat every worthwhile new theory raises new problems. Thus there is no danger that science will come to an end because it has completed its task, clanks to the "infinity of our ign

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服