ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:1.33MB ,
资源ID:5743797      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5743797.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(浙江省2013年高考数学第二轮复习-专题升级训练29-解答题专项训练(解析几何)-理.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

浙江省2013年高考数学第二轮复习-专题升级训练29-解答题专项训练(解析几何)-理.doc

1、专题升级训练29解答题专项训练(解析几何)1设有半径为3千米的圆形村落,A,B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇设A,B两人速度一定,其速度比为31,问两人在何处相遇?2已知圆C:x2y22x4y40问是否存在斜率为1的直线l,使得l被圆C截得的弦为AB,且以AB为直径的圆经过原点?若存在,写出直线l的方程;若不存在,说明理由 3设直线l1:yk1x1,l2:yk2x1,其中实数k1,k2满足k1k220(1)证明l1与l2相交;(2)证明l1与l2的交点在椭圆2x2y21上4已知过抛物线y22px(p0)的

2、焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1x2)两点,且|AB|9(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若,求的值5已知椭圆C的中心为坐标原点O,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且2(1)求椭圆方程;(2)求m的取值范围6设椭圆C:1(ab0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,2(1)求椭圆C的离心率;(2)如果|AB|,求椭圆C的方程7已知点F1,F2分别为椭圆C:1(ab0)的左、右焦点,P是椭圆C上的一点,

3、且|F1F2|2,F1PF2,F1PF2的面积为(1)求椭圆C的方程;(2)点M的坐标为,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的kR,是否为定值?若是,求出这个定值;若不是,说明理由8已知抛物线C1:x2y,圆C2:x2(y4)21的圆心为点M(1)求点M到抛物线C1的准线的距离;(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程参考答案1解:建立如图所示平面直角坐标系,由题意,可设A,B两人速度分别为3v千米/时,v千米/时,再设出发x0小时后,A在点P改变方向,又经过y0

4、小时,在点Q处与B相遇则P,Q两点坐标为(3vx0,0),(0,vx0vy0)由|OP|2|OQ|2|PQ|2知,(3vx0)2(vx0vy0)2(3vy0)2,即(x0y0)(5x04y0)0.x0y00,5x04y0.将代入kPQ,得kPQ.又已知PQ与圆相切,直线PQ在y轴上的截距就是两人相遇的位置设直线yxb(b0)与圆x2y29 相切,则有3,解得b.答:A,B相遇点在离村中心正北千米处2解:假设l存在,设其方程为yxm,代入x2y22x4y40,得2x22(m1)xm24m40.再设A(x1,y1),B(x2,y2),于是x1x2(m1),x1x2.以AB为直径的圆经过原点,即直线

5、OA与OB互相垂直,也就是kOAkOB1,所以1,即2x1x2m(x1x2)m20,将x1x2(m1),x1x2,代入整理得m23m40,解得m4或m1.故所求的直线存在,且有两条,其方程分别为xy10,xy40.3证明:(1)假设l1与l2不相交,则l1与l2平行,有k1k2,代入k1k220,得k20,这与k1为实数的事实相矛盾从而k1k2,即l1与l2相交(2)方法一:由方程组解得交点P的坐标为,而2x2y22221.此即表明交点P(x,y)在椭圆2x2y21上方法二:交点P的坐标(x,y)满足故知x0.从而代入k1k220,得20.整理后,得2x2y21.所以交点P在椭圆2x2y21上

6、4解:(1)直线AB的方程是y2,与y22px联立,从而有4x25pxp20,所以x1x2.由抛物线定义得|AB|x1x2p9,所以p4,从而抛物线方程是y28x.(2)由p4,知4x25pxp20可化为x25x40,从而x11,x24,y12,y24,从而A(1,2),B(4,4)设(x3,y3)(1,2)(4,4)(41,42),又y8x3,所以2(21)28(41),即(21)241,解得0,或2.5解:(1)由题意,知椭圆的焦点在y轴上,设椭圆方程为1(ab0),由题意,知a2,bc,又a2b2c2,则b,所以椭圆方程为1.(2)设A(x1,y1),B(x2,y2),由题意,知直线l的

7、斜率存在,设其方程为ykxm,与椭圆方程联立,即消去y则(2k2)x22mkxm240,(2mk)24(2k2)(m24)0,由根与系数的关系,知又2,即有(x1,my1)2(x2,y2m),x12x2.22.整理,得(9m24)k282m2,又9m240时不成立,所以k20,得m24,此时0,所以m的取值范围为.6解:设A(x1,y1),B(x2,y2),由题意知,y10,y20.(1)直线l的方程为y(xc),其中c.联立得(3a2b2)y22b2cy3b40,解得y1,y2.因为2,所以y12y2.即2,得离心率e.(2)因为|AB|y2y1|,所以,由,得ba.所以a,得a3,b.椭圆

8、C的方程为1.7解:(1)设|PF1|m,|PF2|n.在PF1F2中,由余弦定理得22m2n22mncos,化简得,m2n2mn4.由,得mnsin.化简得mn.于是(mn)2m2n2mn3mn8.mn2,由此可得,a.又半焦距c1,b2a2c21.因此,椭圆C的方程为y21.(2)由已知得F2(1,0),直线l的方程为yk(x1),由消去y得,(2k21)x24k2x2(k21)0.设A(x1,y1),B(x2,y2),则x1x2,x1x2.y1y2k2(x11)(x21)(k21)x1x2(x1x2)k2(k21)k2.由此可知为定值8解:(1)由题意可知,抛物线的准线方程为:y,所以圆心M(0,4)到准线的距离是.(2)设P(x0,x),A(x1,x),B(x2,x),由题意得x00,x01,x1x2.设过点P的圆C2的切线方程为yxk(xx0),即ykxkx0x.则1,即(x1)k22x0(4x)k(x4)210.设PA,PB的斜率为k1,k2(k1k2),则k1,k2是上述方程的两根,所以k1k2,k1k2.将代入yx2,得x2kxkx0x0,由于x0是此方程的根,故x1k1x0,x2k2x0,所以kABx1x2k1k22x02x0,kMP.由MPAB,得kABkMP1,解得x,即点P的坐标为,所以直线l的方程为yx4.- 5 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服