ImageVerifierCode 换一换
格式:PDF , 页数:18 ,大小:3.19MB ,
资源ID:573944      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/573944.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于电化学阻抗谱的致病菌检测传感器的研究进展.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于电化学阻抗谱的致病菌检测传感器的研究进展.pdf

1、REVIEWRecent Advances in Electrochemical ImpedanceSpectroscopy-based Pathogenic Bacteria SensingTao Chena,Yuan-Hong Xua,*,Jing-Hong Lib,*aInstitute of Biomedical Engineering,College of Life Sciences,Qingdao University,Qingdao,266071,ChinabDepartment of Chemistry,Key Laboratory of Bioorganic Phosphor

2、us Chemistry&Chemical Biology,Tsinghua University,Beijing,100084,ChinaAbstractPathogenic bacteria have been throwing great threat on human health for thousands of years.Their real-timemonitoring is in urgent need as it could effectively halt the spread of pathogenic bacteria and thus reducing the ri

3、sk tohuman health.Up till now,diverse technologies such as electrochemistry,optics,piezoelectricity and calorimetry havebeen developed for bacteria sensing.Therein,electrochemical impedance spectroscopy(EIS)-based sensors showgreat potential in point-of-care bacterial analysis because of their low-c

4、ost,short read-out time,good reproducibility,and portable equipment construction.In this review,we will primarily summarize the typical applications of elec-trochemical impedance technology in bacteria sensing based on different electrodes in the last three years.As weknow,the electrode materials pl

5、ay an extremely important role in the construction of EIS-based sensors because notonly the immobilization of bio-recognition elements for bacteria,but also the sensitivity,economical efficiency andportability of the as-prepared sensors are mainly determined by the electrode materials.Therefore,in o

6、rder to providenew researchers a clear preparation process for EIS-based sensors fabricated with different electrodes,we try toclassify the EIS-based sensors according to the different electrode platforms.Moreover,present difficulties,futuredirections and perspectives for their applications are also

7、 discussed.It can provide guidance in future study of novelEIS-based sensors for rapid,sensitive and accurate sensing of diverse pathogenic bacteria.Keywords:Electrochemical impedance spectroscopy;Pathogenic bacteria detection;Bio-recognition elements;Elec-trode material1.IntroductionPathogenic bact

8、eria,ubiquitously spreading innearly every corner of human living environment,could lead to serious infectious diseases such asfoodborne disease,urinary system infections aswell as sexually transmitted disease 1e5.There-fore,their accurate,sensitive and rapid detectionhas been a major public health

9、concern.Nowa-days,the developed technologies in laboratory forpathogenic bacteria detection are mainly based ontechnologies including colony morphology recog-nition 6,fluorescence resonance energy transfer7,electrochemistry 8,9,colorimetry 10,nucleicacid-based diagnosis 11,fluorescent and opt-electr

10、ic technology 12,nanopore technology 13and calorimetry 14.Therein,only three methodsbased on colony,polymerase chain reaction andenzyme linked immunosorbent assay are admittedby Food and Drug Administration,and the devel-oped sensors have been come to commercial ap-plicationsfromlaboratoryprototypes

11、15.Generally,theseapproachesusuallyrelyonmultistep processes including bacterial culturing,isolation and selective enrichment of target or-ganisms to a detectable level.Obviously,thesesensitive but time-consuming(more than 24 h)methods are unsuitable for applications in real-Received 31 October 2022

12、;Received in revised form 5 January 2023;Accepted 17 May 2023Available online 24 May 2023*Corresponding author,Yuan-Hong Xu,Tel:(86-532)85956199,E-mail address:.*Corresponding author,Jing-Hong Li,Tel:(86-10)62795290,E-mail address:.https:/doi.org/10.13208/j.electrochem.22180021006-3471/2023 Xiamen U

13、niversity and Chinese Chemical Society.This is an open access article under the CC BY-NC license(http:/creativecommons.org/licenses/by-nc/4.0/).time monitoring and rapid detection of pathogenicbacteria.Therefore,although these methods havecome to real-world implementation,centralizedinstruments and

14、skilled personnel are also essen-tial,limiting their further commercial applicationsin large-scale.To the contrary,electrochemical sensors havealready found great commercial success in thefields of personalized diabetes management 16,because electrochemistry provides the fabricatedsensors with advan

15、tages including high specificity,sensitivity,portability and economical efficiency8.Moreover,their fast signal readout and easierminiaturizationmakethem great potential inpoint-of-care bacterial analysis 17.Consequently,electrochemicalimpedancespectroscopy(EIS)-based sensors have been applied for th

16、e identifi-cation and determination of bacteria for more than50 years 9,18.The initial utilization of EIS is in thefield of microbiology monitoring such as biofilmformation and growth of overall bacterial 19.Thesystem is generally made of two planar electrodesimmersed in culture medium,which could a

17、chievethe real-time detection of bacterial growth densityby monitoring the electrochemical parameters ofthe growth medium 20.Accordingly,dozens ofreal-time commercial products have been devel-oped and the determination of metabolic activity ofbacteria is also realized 21.Based on this mech-anism,EIS

18、-based sensors have also been proved asan effective and informative technique for bacteriadetection,which could reflect the information ofbacterial species and concentrations by monitoringthe occurring reaction on the employed electrodesurface as well as direct tracing the interactionsbetween the bi

19、o-receptor and target bacteria 22.In bacteria sensing process,the binding of bac-teria or metabolites produced by bacteria to thesurface of employed electrode could change theelectricalproperties(diffusiveelectrochemicalimpedance,double layer capacitance,and chargetransfer resistance,etc.)of the wor

20、king electrode,either because of the inherent properties of bac-terial cell membranes or by intercepting diffusingredox-active molecules from interacting with thesurface23.Indetail,iftheelectrochemicalimpedance is obtained in the sensing systemwithoutredoxprobes,themeasuredelectro-chemical impedance

21、 signal is a direct reflection ofintact bacteria and could be easily influenced bythe number,morphology and growth stage of thebacteria 9.In the system that contains redoxprobes,the change in faradaic impedance isinstead tested and obtained.Moreover,like gen-eral biosensors,in order to achieve the s

22、pecificdetection of certain pathogenic bacterium,bio-recognition elements such as antibodies 24e29,aptamers 30e32 and bacteriophages 33e36 arefixed on the surface of different working electrodesas shown in Fig.1 via electrostatic adsorption orcovalent coupling to capture/detectpathogensselectivelyan

23、dspecifically.Therefore,theemployed bio-recognition elements endow theobtained sensors with inherent sensitivity anddiscrimination.In the last three years,a series of works on thestudy of EIS-based sensors have been reported anda great process has been made for bacteria sensing.Although several inte

24、resting review articles on theuse of EIS in bacterial sensing have been published9,37e39,the rapidly expanding literature reviewin the past three years has not yet been found.Inthis review,we will primarily summarize thetypical applications of EIS in bacteria sensing inthe last three years.Present d

25、ifficulties,future di-rections and perspectives for the EIS-based sen-sors are also discussed.2.The selection of electrodesThe electrode materials are equally important forthe construction of EIS-based sensors.For suchutilizations,portable electrodes such as glassycarbon electrode,gold electrode,car

26、bon-basedelectrode,screen-printed electrode,indium tinoxide electrode and carbon paste electrode aremost frequently used,which greatly promote thedevelopment of EIS-based sensors.The selectionof electrode material for the construction of EIS-based sensor is usually decided on the cost,com-mercial av

27、ailability and potential need for surfacemodifications 8.Thus,frequently used materialscontain glassy carbon 30,36,40e42,noble metals43e47 such as gold,silver and platinum,carbon-based materials 24,48e50 such as graphene oxide(GO),carbon nanotubes,carbon nano-walls,andmetal oxides 51,52 such as nick

28、el oxide and in-dium tin oxide,etc.Improvements to electrodeplatforms via modification of materials with largesurface area and conductivity have enabled the as-prepared sensor with enhanced test sensitivity andfast signal readout time.With the miniaturization of electrodes,sophisti-cated interdigita

29、ted electrode arrays,which isusually called the second generation of electrode,arereceivinggreatconcerninrecentyears26,29,32,53.The interdigitated electrode arraysare commonly made of two individual electrodestripscontainingmultiplemicroelectrodes8.Therein,each set of microelectrodes could thuswork

30、as a pole for bipolar electrochemical imped-ancetest.ThesensingplatformsbasedonJournal of Electrochemistry,2023,29(6),2218002(2 of 18)interdigitatedelectrodesprovideoutstandingspace efficiency because both spacing and size ofthese electrodes are well-optimized 9.Moreover,the interdigitated electrode

31、 arrays have obviousmerits over conventional ones,such as low re-sistances,mall required sensing volumes,quickequilibrations as well as high signal-to-noise ratios54.Herein,we try to classify the EIS-based sen-sors for bacteria sensing according to the electrodeplatforms.As shown in Table 1,the rela

32、ted pa-rameters of the constructed EIS-based sensorsincluding electrode materials,analyte,linear rangeand limit of detection(LOD)are also summarized.2.1.EIS-based sensors for bacterial sensing2.1.1.Glassy carbon electrode(GCE)for EIS-basedsensor developmentIn the fabrication of EIS-based sensors,GCE

33、shave been receiving great concern due to theirsmall thermal expansion coefficient,high chemicalstability,and outstanding air tightness 56,57.Tofurther enhance the conductivity of the workingelectrode and immobilize more bio-recognitionelements on GCE,gold materials such as Aunanoparticles(Au NPs)30

34、,36,40 and gold nano-rods 58 have been applied for GCE modification.Via electrochemical deposition of Au NPs on thesurface of GCE as shown in Fig.2A,Mulchandanisgroup successfully obtained the Au NPs modifiedGCE(GCE-Au)36.Then,M13 bacteriophagewere immobilized on the surface of GCE-Au viacross-linki

35、ngreactionof3-mercaptopropionicacidand1-(3-dimethylaminopropyl)-3-ethyl-carbodiimidehydrochloride/N-hydroxysuccini-mide,obtainingaselectivenon-lyticM13bacteriophage-based cytosensor for Escherichia coli(E.coli)sensing.The biosensor achieved a LOD of14CFU/mL.Interestingly,theas-preparedbiosensorexhib

36、itedthesimilarsensitivityinphosphate buffer as in river water samples,indi-cating its good applicability to real samples.Withthe similar methods,anti-protein antibody(IgY)and aptamer were respectively fixed on the surfaceof AuNP-modified GCE,by Roushani et al.40and Dai et al.30.Accordingly,the immun

37、o-sensors were obtained and the successful detectionof S.aureus was achieved.Molecularlyimprintedpolymers(MIPs)areman-made antibodies with customized bindingsites complementary to that of the employedtemplates in both physical and chemical structures59,60.MIPs are found with obvious merits,suchas ea

38、sy synthesis,economic efficiency,and long-time chemical and physical stabilities in com-paration with the natural antibodies.Thus,MIPshave been applied for the construction of varioussensing platforms in diverse molecules sensing61e63.As shown in Fig.2B,the molecularlyimprintedsensorshaveachievedthe

39、specificdetection of bacteria with the help of MIPs.Recently,combining with MIPs and EIS,Biansgroup reported the preparation of a reusablesensor for rapid determination of pathogenic bac-teria based on bacteria-imprinted polythiophenefilm(BIF)employingStaphylococcusaureus(S.aureus)as an imprinting t

40、emplate 41.The BIF,as apolymer layer for specific recognition of S.aureus,is deposited on the surface of a GCE via electro-copolymerization of TE monomer in the presenceof S.aureus(template)and followed by templateremoval.When the S.aureus rebinds on the BIF,the electrochemical impedance of the work

41、ingelectrode is increased.Accordingly,the BIF-basedFig.1.The general fabrication process of EIS-based bacterial sensors via the modification of different electrodes(glassy carbon,Au,carbon,screen-printed,indium tin oxide,and interdigitated electrode)using different recognition elements(antibody,mann

42、ose,MIPs,bacteriophage,lectin,aptamer).Journal of Electrochemistry,2023,29(6),2218002(3 of 18)Table 1.Parameters of the constructed sensors including electrode material,analyte,linear range and LOD in the last three years.Ref.LODLinear rangeAnalyteElectrodeGCEE.coli103e107500 CFU/mLCFU/mL56Gold modi

43、fied GCEE.coli10e10514 CFU/mLCFU/mL36AuNP modified GCES.aureus10e1073.3 CFU/mLCFU/mL40Dual-aptamer-based sand-wich GCES.aureus1?101to 1?1052 CFU/mLCFU/mL30Gold nanorods modified GCES.aureus1.8?103to 1.8?107CFU/mL2.4?102CFU mL583-Thiopheneethanol modifiedGCES.aureus10e1074 CFU/mLCFU/mL41Synthetic rec

44、eptor-trans-ducing platform couplingE.coli120 CFU/mL1000 CFU/mL55GCEAcinetobacter baumannii10?1to 1040.030 CFU/mLCFU/mL42Gold electrodesE.coli;L.innocua;S.aureus;S.Typhimurium1.5 to 1.5?103;1.5to 1.5?104;1.5 to 1.5?105;15 to 1.5?104CFU/mL1.5;1.5;1.5;15 CFU/mL45Gold electrodeS.typhimurium and E.coli6

45、.859N/A?1023L$mole1and2.054?1017L$mole143Screen-printed gold electrodeSalmonella15 to 2.57spp.?1075 CFU/mLCFU/mL463D gold nano-/microislandsand graphene electrodesE.coli,P.putida,and S.epidermidis2?10 to 2?105,2?10 to2?104,and 1?102to1?105CFU/mL20 CFU/mL44Gold disk electrodeSalmonella2?10 to 2?106/2

46、?102to2?10517 CFU/mL;1.3?102CFU/mL;1 CFU/mL33Lipid membrane modifiedgold electrodeE.coli10DNA?9to 10?19mol$L?110?19mol$L?165Ag electrodesE.coliandPseudomonasaeruginosa500Up to 500 CFU/mLe1000 CFU/mL47Graphenic carbon electrodesE.coli and S.aureus2e2 CFU/mL20 CFU/mL50Reduced graphene oxide-carbon ele

47、ctrodeS.mutans,A.viscosus,and L.fermentumN/AN/A48Boron-doped carbon nano-walls electrodesPseudomonas syringae pv.lachrymans3.25?100to3.25?108CFU/mL119 CFU/mL24Carbon nanotube-basedelectrodeS.aureus102e1071.23CFU/mL?102CFU/mL;1.29?102CFU/mL34SPEE.coli102e10810 CFU/mLCFU/mL66SPEE.coli1DNA?10?10mmol$L?

48、1to1?10?5mmol$L?11.95?10?15mmol$L?170Screen-printed carbonelectrodesS.aureus10e1083 CFU/mLCFU/mL31Screen printed goldelectrodesS.aureus10?101to 10?107CFU/mL101.58CFU/mL68GlycoMXene screen printedelectrodesE.coli101e10810 CFU/mLCFU/mL67ITO coated polyethyleneterephthalate(ITO:PET)Pseudomonas aerugino

49、saN/AN/A51Fluorine doped tin oxideelectrodeSalmonella gallinarum,andSalmonella pullorum(1e1?105cells)with 37and 25 viable cells51 and 37 cells,respectively infaecal samples and218 and 173 cells,respectively inmeat samples.52Anti-E.coliO157:H7 antibody-modified CPEE.coli1?10?1to 1?106CFU/mL0.1 CFU/mL

50、81Polyaniline nanofibers modi-fied filter paper substrateS.aureus,E.coli,P.aeruginosaN/AN/A35(continued on next page)Journal of Electrochemistry,2023,29(6),2218002(4 of 18)sensor could determinate S.aureus in the range of10e107CFU/mL witha LOD of 4 CFU/mL.Impressively,the as-prepared sensing platfor

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服