ImageVerifierCode 换一换
格式:PPTX , 页数:18 ,大小:1.21MB ,
资源ID:5732033      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5732033.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(双曲线的定义.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双曲线的定义.pptx

1、双曲线及其标准方程双曲线及其标准方程 1.1.椭圆的定义椭圆的定义和和 等于常数等于常数2a(2a|F1F2|0)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F1、F2的距离的的距离的2.引入问题:引入问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F1、F2的距离的的距离的复习复习|MF1|+|MF2|=2a(2a|F1F2|0)如图如图如图如图(A)(A),|MF|MF1 1|-|MF|MF2 2|=|=常数常数常数常数如图如图如图如图(B)(B),上面上面上面上面 两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫做双曲线两条合起来叫

2、做双曲线由由由由可得:可得:可得:可得:|MF|MF1 1|-|MF|MF2 2|=|=常数常数常数常数 (差的绝对值)差的绝对值)|MF|MF2 2|-|MF|MF1 1|=|=常数常数常数常数双曲线在生活中双曲线在生活中 .两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=2c 焦距焦距.(1)2a0;双曲线定义双曲线定义思考:思考:(1)若)若2a=|F1F2|,则轨迹是?则轨迹是?(2)若)若2a|F1F2|,则轨迹是?则轨迹是?说明说明(3)若)若2a=0,则轨迹是?则轨迹是?|MF1|-|MF2|=2a(1)两条射线两条射线(2)不表示任何轨迹不表示任何轨迹(3)(

3、3)(3)(3)线段线段线段线段F F F F1 1 1 1F F F F2 2 2 2的垂直平分线的垂直平分线的垂直平分线的垂直平分线方程表示的曲线是双曲线方程表示的曲线是双曲线方程表示的曲线是双曲线的右支方程表示的曲线是双曲线的右支方程表示的曲线是方程表示的曲线是x轴上分别以轴上分别以F1和和F2为端点,为端点,指向指向x轴的负半轴和正半轴的两条射线。轴的负半轴和正半轴的两条射线。练习巩固练习巩固:如何建立适当的直角坐标系?如何建立适当的直角坐标系?原则:尽可能使方程的形式简单、运算简单;原则:尽可能使方程的形式简单、运算简单;(一般利用对称轴或已有的互相垂直的线段一般利用对称轴或已有的互

4、相垂直的线段所在的直线作为坐标轴所在的直线作为坐标轴.).)探讨建立平面直角坐标系的方案探讨建立平面直角坐标系的方案OxyOxyOxy方案一方案一Oxy(对称、对称、“简洁简洁”)Oxy方案二方案二F2 2F1 1MxOy求曲线方程的步骤:求曲线方程的步骤:双曲线的标准方程双曲线的标准方程1.1.建系建系.以以F1,F2所在的直线为所在的直线为x轴,线段轴,线段F1F2的中点为原点建立直角坐标系的中点为原点建立直角坐标系2.2.设点设点设设M(x,y),则则F1(-c,0),F2(c,0)3.3.列式列式|MF1|-|MF2|=2a4.4.化简化简此即为此即为焦点在焦点在x轴上的轴上的双曲线双

5、曲线的标准的标准方程方程F2 2F1 1MxOyOMF2F1xy若建系时若建系时,焦点在焦点在y轴上呢轴上呢?下 页上 页首 页 小 结结 束问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?问题:如何判断双曲线的焦点在哪个轴上?练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标练习:写出以下双曲线的焦点坐标F(5,0)F(0,5)F(c,0)F(0,c)下 页上 页首 页 小 结结 束例例1 已知双曲线的焦点为已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上,双曲线上一点一点P

6、到到F1、F2的距离的差的绝对值等于的距离的差的绝对值等于6,求双曲线,求双曲线的标准方程的标准方程.2 2a a=6,=6,c=5c=5a a=3,c=5=3,c=5b b2 2=5=52 2-3 32 2=16=16所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:所以所求双曲线的标准方程为:根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在根据双曲线的焦点在 x x 轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:轴上,设它的标准方程为:解解:下 页上 页首 页 小 结结 束练习练习1 1:如果方程如果方程 表示双曲线,表示双

7、曲线,求求m m的取值范围的取值范围.分析分析:方程方程 表示双曲线时,则表示双曲线时,则m的取值的取值范围范围_.变式一变式一:下 页上 页首 页 小 结结 束练习练习2 2:证明椭圆证明椭圆 与双曲线与双曲线x x2 2-15y-15y2 2=15=15的焦点相同的焦点相同.上题的椭圆与双曲线的一个交点为上题的椭圆与双曲线的一个交点为P P,焦点为焦点为F F1 1,F,F2 2,求求|PF|PF1 1|.|.变式变式:|PF1|+|PF2|=10,分析分析:下 页上 页首 页 小 结结 束定义定义定义定义图象图象图象图象方程方程方程方程焦点焦点焦点焦点a.b.c a.b.c 的关系的关系的关系的关系|MF1|-|MF2|=2a(2a0,b0,但,但a不一不一定大于定大于b,c2=a2+b2ab0,a2=b2+c2双曲线与椭圆之间的区别与联系双曲线与椭圆之间的区别与联系双曲线与椭圆之间的区别与联系双曲线与椭圆之间的区别与联系|MF1|MF2|=2a|MF1|+|MF2|=2a 椭椭 圆圆双曲线双曲线F(0,c)F(0,c)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服