ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:2.97MB ,
资源ID:5728534      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5728534.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《一次函数的应用第3课时》示范公开课教学设计【北师大版八年级数学上册】.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《一次函数的应用第3课时》示范公开课教学设计【北师大版八年级数学上册】.docx

1、 教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.【教学重点】能通过函数图象获取信息,解决简单的实际问题.【教学难点】真正读懂函数图象的实际意义. 一、创设情境,引入新知观察下图,你能发现它们三条函数直线之间的差别吗?二、合作交流,探究新知引例:l 反映了某公司产品

2、的销售收入与销售量的关系,根据图意填空:1(1)当销售量为 2 吨时,销售收入(2)当销售量为 6 吨时,销售收入元,元,元.销售成本(3)当销售量为(4)当销售量当销售量元, 利润时,销售收入等于销售成本.时,该公司赢利(收入大于成本).时,该公司亏损(收入小于成本).(5)当销售成本为 4500 元时,销售量吨.(6)l 反映了公司产品的销售收入与销售量的关系.l 对应的函数表达式是,11l 反映了公司产品的销售成本与销售量的关系l 对应的函数表达式是.22想一想l :y=1000x 和 l :y=500x+2000 中的 k 和 b 的实际意义各是什么?12 ABAB追赶(如图),下图中

3、l , l 分别表示两船相对于海岸的12距离 (海里)与追赶时间t (分)之间的关系.s根据图象回答下列问题:B(1)哪条线表示 到海岸的距离与时间之间的关系?时, 距海岸 0 n mile,即B1A B(2) , 哪个速度快?解:从 0 增加到 10 时,l 的纵坐标增加了 2,而l 的纵坐21AB标增加了 5,即 10 min 内, 行驶了 2 海里, 行驶了 5 nBmile,所以 的速度快.BA(3)15 min 内 能否追上 ?解:可以看出,当t =15l2上对应点的下方.BA(4)如果一直追下去,那么 能否追上 ?解:如图l ,l 相交于点 P.因此,如果一直追下去,那么B12AA

4、lB2BA解:从图中可以看出,l 与l 交点 P 的纵坐标小于l ,这说明122ABA在 逃入公海前,我边防快艇 能够追上 .(6)l 与 l 对应的两个一次函数 y=k x +b 与 y=k x+b 中,121122k k 的实际意义各是什么?可疑船只 A 与快艇 B 的速度各12 说明:学生在教师的引导下,逐步形成了良好的识图能力.31例 2 已知一次函数 y xa 和 y- xb 的图象都经过点 A(4,0),且与 y 轴分别22交于 B、C 两点,求ABC 的面积四、巩固新知1. 如图,射线 OA、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中 s、t 分别表示行驶距离

5、和时间,则这两人骑自行车的速度相差 km/h.2. 一次越野跑中,当小明跑了 1600 米时,小刚跑了 1400 米,小明、小刚所跑的路程y(米)与时间 t(秒)之间的函数关系如图,则这次越野跑的全程为 米.3. 小亮和小明周六到距学校 24 km 的滨湖湿地公园春游,小亮 8:00 从学校出发,骑自行车去湿地公园,小明 8:30 从学校出发,乘车沿相同路线去滨湖湿地公园,在同一直角坐标系中,小亮和小明的行进路程 S(km)与时间 t(时)的函数图象如图所示.根据图象得到结论,其中错误的是().A小亮骑自行车的平均速度是 12km/h B小明比小亮提前 0.5 小时到达滨湖湿地公园C小明在距学

6、校 12km 处追上小亮D9:30 小明与小亮相距 4km4. 在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度 y(厘米)与燃烧时间x(时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是、(2)分别求甲、乙两根蜡烛燃烧时 y 与 x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?五、归纳小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题

7、,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结. 教学反思略.B小明比小亮提前 0.5 小时到达滨湖湿地公园C小明在距学校 12km 处追上小亮D9:30 小明与小亮相距 4km4. 在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度 y(厘米)与燃烧时间x

8、(时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是、(2)分别求甲、乙两根蜡烛燃烧时 y 与 x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?五、归纳小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间

9、是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结. 教学反思略.B小明比小亮提前 0.5 小时到达滨湖湿地公园C小明在距学校 12km 处追上小亮D9:30 小明与小亮相距 4km4. 在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度 y(厘米)与燃烧时间x(时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是、(2)分别求

10、甲、乙两根蜡烛燃烧时 y 与 x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?五、归纳小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结. 教学反思略.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服