ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:188KB ,
资源ID:5728379      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5728379.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学平面解析几何初步经典例题.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学平面解析几何初步经典例题.doc

1、直线和圆的方程一、知识导学1两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|21|或|AB|=|2-1|.2定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是.当P点为AB的中点时,=1,此时中点坐标公式是.3直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率

2、存在的直线,其斜率与倾斜角之间的关系是=tan.4确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.名称方程说明适用条件斜截式为直线的斜率b为直线的纵截距倾斜角为90的直线不能用此式点斜式() 为直线上的已知点,为直线的斜率倾斜角为90的直线不能用此式两点式=(),()是直线上两个已知点与两坐标轴平行的直线不能用此式截距式+=1为直线的横截距b为直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式,分别为斜率、横截距和纵截距A、B不全为零5两条直线的夹角。当两直线的斜率,都存在且 -1时,tan=,当直线的斜率不存在时,可结合图形判断.

3、另外还应注意到:“到角”公式与“夹角”公式的区别.6怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.(1)斜率存在且不重合的两条直线1, 2,有以下结论:12=,且1212= -1(2)对于直线1,2 ,当1,2,1,2都不为零时,有以下结论:12=1212+12 = 01与2相交1与2重合=7点到直线的距离公式.(1)已知一点P()及一条直线:,则点P到直线的距离d=;(2)两平行直线1: , 2: 之间的距离d=.8确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两

4、种形式之间的相互转化及相互联系(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;(2)圆的一般方程:(0),圆心坐标为(-,-),半径为=.二、疑难知识导析1直线与圆的位置关系的判定方法.(1)方法一直线:;圆:.一元二次方程(2)方法二直线: ;圆:,圆心(,b)到直线的距离为d=2两圆的位置关系的判定方法.设两圆圆心分别为O1、O2,半径分别为1,2,|O1O2|为圆心距,则两圆位置关系如下:|O1O2|1+2两圆外离;|O1O2|=1+2两圆外切;| 1-2|O1O2|1+2两圆相交;| O1O2 |=|1-2|两圆内切;0| O1O2| 1-2|两圆内含.三、经典例题导讲例1直

5、线l经过P(2,3),且在x,y轴上的截距相等,试求该直线方程.错解:设直线方程为:,又过P(2,3),求得a=5 直线方程为x+y-5=0.错因:直线方程的截距式: 的条件是:0且b0,本题忽略了这一情形.正解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:,直线方程为y=x综上可得:所求直线方程为x+y-5=0或y=x .例2已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.错解:设动点P坐标为(x,y).由已知3 化简3=x2-2x+1+y2-6y+9 . 当x0时得x2-5x+y2-6y+10=0 . 当x0时得x2+ x+y2-

6、6y+10=0 . 错因:上述过程清楚点到y轴距离的意义及两点间距离公式,并且正确应用绝对值定义将方程分类化简,但进一步研究化简后的两个方程,配方后得(x-)2+(y-3)2 = 和 (x+)2+(y-3)2 = - 两个平方数之和不可能为负数,故方程的情况不会出现.正解:接前面的过程,方程化为(x-)2+(y-3)2 = ,方程化为(x+)2+(y-3)2 = - ,由于两个平方数之和不可能为负数,故所求动点P的轨迹方程为: (x-)2+(y-3)2 = (x0)例3m是什么数时,关于x,y的方程(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图象表示一个圆?错解:欲使方程Ax2+

7、Cy2+F=0表示一个圆,只要A=C0, 得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3, 当m=1或m=-3时,x2和y2项的系数相等,这时,原方程的图象表示一个圆错因:A=C,是Ax2+Cy2+F=0表示圆的必要条件,而非充要条件,其充要条件是:A=C0且0.正解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C0, 得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,(1) 当m=1时,方程为2x2+2y2=-3不合题意,舍去.(2) 当m=-3时,方程为14x2+14y2=1,即x2+y2=,原方程的图形表示圆.例4自点A

8、(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+70相切,求光线L所在的直线方程.错解:设反射光线为L,由于L和L关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A(-3,-3),于是L过A(-3,-3).设L的斜率为k,则L的方程为y-(-3)kx-(-3),即kx-y+3k-30,已知圆方程即(x-2)2+(y-2)21,圆心O的坐标为(2,2),半径r1因L和已知圆相切,则O到L的距离等于半径r1即整理得12k2-25k+120解得kL的方程为y+3(x+3)即4x-3y+30因L和L关于x轴对称故L的方程为4x+3y+30.错因:漏

9、解正解:设反射光线为L,由于L和L关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A(-3,-3),于是L过A(-3,-3).设L的斜率为k,则L的方程为y-(-3)kx-(-3),即kx-y+3k-30,已知圆方程即(x-2)2+(y-2)21,圆心O的坐标为(2,2),半径r1因L和已知圆相切,则O到L的距离等于半径r1即整理得12k2-25k+120解得k或kL的方程为y+3(x+3);或y+3(x+3)。即4x-3y+30或3x-4y-30因L和L关于x轴对称故L的方程为4x+3y+30或3x+4y-30.例5求过直线和圆的交点,且满足下列条件之一的圆的方程:(1) 过原点;(

10、2)有最小面积.解:设所求圆的方程是: 即:(1)因为圆过原点,所以,即故所求圆的方程为:.(2) 将圆系方程化为标准式,有:当其半径最小时,圆的面积最小,此时为所求.故满足条件的圆的方程是.点评:(1)直线和圆相交问题,这里应用了曲线系方程,这种解法比较方便;当然也可以待定系数法。(2)面积最小时即圆半径最小。也可用几何意义,即直线与相交弦为直径时圆面积最小.例6(06年辽宁理科)已知点A(),B()(0)是抛物线上的两个动点,O是坐标原点,向量满足.设圆C的方程为(1)证明线段AB是圆C的直径;(2)当圆C的圆心到直线的距离的最小值为时,求的值.解:(1)证明,()2()2,整理得:00设

11、M()是以线段AB为直径的圆上的任意一点,则0即0整理得:故线段AB是圆C的直径.(2)设圆C的圆心为C(),则,又0,0,04所以圆心的轨迹方程为设圆心C到直线的距离为,则当时,有最小值,由题设得2.四、典型习题导练1直线截圆得的劣弧所对的圆心角为 ( )A. B. C. D.2.已知直线x=a(a0)和圆(x-1)2+y2=4相切 ,那么a的值是( )A.5 B.4 C.3 D.23. 如果实数x、y满足等式(x-2)2+y2,则的最大值为: .4.设正方形ABCD(A、B、C、D顺时针排列)的外接圆方程为x2+y2-6x+a=0(a9),C、D点所在直线l的斜率为.(1)求外接圆圆心M点

12、的坐标及正方形对角线AC、BD的斜率;(2)如果在x轴上方的A、B两点在一条以原点为顶点,以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;(3)如果ABCD的外接圆半径为2,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.5.如图,已知圆C:(x+4)2+y2=4。圆D的圆心D在y轴上且与圆C外切。圆 D与y轴交于A、B两点,点P为(-3,0).(1)若点D坐标为(0,3),求APB的正切值;(2)当点D在y轴上运动时,求APB的正切值的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.8

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服