ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:40.72KB ,
资源ID:5680857      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5680857.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(等差数列前n项和说课稿.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等差数列前n项和说课稿.docx

1、 等差数列前n项和说课稿一、教材分析 教学内容 等差数列前n项和必修5第二章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。 地位与作用 本节对“等差数列前n 项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其学习平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法倒序相加求和法,具有承上启下的重要作用。 二、学情分析 知识基础:高二年级学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和。 认知水平与能力:高二学生已初步具有抽象逻辑思维能力,能在教师的引导

2、下独立地解决问题。 任教班级学生特点:我班学生基础知识较扎实、思维较活跃,能够很好的掌握教材上的内容,能较好地应用数形结合的方法解决问题,但处理抽象问题的能力还有待进一步提高。 概述本课的教学设计分为四个部分,包括:目标分析,教学方法,过程设计和教学反思。设计反映了等差数列求和公式推导过程中数学思想方法倒序相加法的生成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节。以这些分析为基础从而确定教学目标,而过程设计则针对目标从六个环节进行具体的设计。下面从如下几个方面进行详细说明。一、教学内容的数学本质及教学目标定位等差数列前n项和 ,这是教材给出的前n项

3、和的定义,但需要说明的是这只是一个形式定义,表示求和是一般意义的加法运算,而本节课要推导的等差数列的前n项和的数学本质是寻求与n的一个函数关系式,如果这个关系式能够用解析式来表达,那么我们就完全把握了这个求和公式。本节课是等差数列的前n项和的第一课时,从知识点来说,掌握求和公式对没个学生来说并不困难,而难点是在于如何从求和公式的推导过程中渗透倒序相加求和的思想方法,因此,依据教学大纲的教学要求,渗透新课标理念,我首先对学情进行了具体分析,并结合学情分析,制定了本节课的教学目标。首先,高二学生已学习了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和,并且高一学生的抽象逻辑推理能力基本形成

4、,抽象辩证,逻辑推论能力开始产生,能在教师的引导下独立地解决问题。另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生有些粗心,处理抽象问题的能力还有待进一步提高于是,结合以上的学情分析,我从 “知识技能”、“数学思考”、“解决问题”和“情感态度”设定目标。其中知识技能目标是:(1)理解等差数列前n项和的概念意义与公式意义的区别与联系;(2)掌握等差数列的前n项和公式的推导过程;(3)会灵活运用等差数列的前n项和公式. “数学思考”则是:(1)通过对等差数列

5、前n项和公式的推导过程,渗透倒序相加求和的数学思想.(2)通过公式的运用体会方程的思想. (3)通过灵活运用公式的过程,提高学生类比化归、数形结合的能力以此来解决如何推导等差数列前n项和的问题。并且从过程渗透了本课的情感态度目标:结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。以上是对教学目标定位的说明。 二、学习基础及作用 本节内容是现行高中教材第二章第三节的第一课时,本节对“等差数列前n 项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其学习平台是学生已掌握等差数列的性质以及

6、高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法倒序相加求和法,具有承上启下的重要作用 对求和公式的认识中,将公式1与公式2与梯形的面积公式建立了联系,同时也回顾了以往推导梯形面积公式的方法,同样用到了倒序的思想,前后呼应。三、教学诊断分析1、根据教学经验及学生反馈的信息,在本课的学习中,学生对公式的掌握及简单应用并不困难,而难点在于如何在推导等差数列前n项和的过程中渗透倒序相加的思想方法,这就意味着如何自然地给出倒序相加求和法,是本课设计环节中的一个重点内容。我首先让学生回顾高斯求和法,学生容易进行类比,将首末两项进行配对,但很快遇到问题,即奇偶项数的数列要分别

7、进行讨论,于是这里引导学生观察脚标的特点,从而突破这一难点。但此法不是最好方法,为了实现这一创造过程的自然,设计中联想到堆木料的例子,引导学生实现从一个数列“配对”的方法发展到两个数列的“配对”,接下来的分析和应用也就水到渠成。2、在对公式的认识中,学生不容易想到将两个公式与梯形面积公式建立联系,此时教师可做适当的提示,一旦给出提示后,学生便能迅速找到二者的关系。认识过程中再次强调倒序相加的思想方法。 3、由于高斯求和法众所周知,于是我补充了我国古代研究数列求和的情况,但由于时间关系不能展开讲解,所以如何在课后引导学生进行了解是一个值得研究的问题。4、本节课充分利用了多媒体技术的强大功能,把现

8、代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去。四、教法特点及预期效果分析根据教学内容和学生的学习状况、认知特点,本课采用“探究发现”教学模式引导学生在活动中进行探究,在师生互动交流中,发现等差数列前n项和的推导方法,教师的教法突出活动的组织设计与方法的引导, 学生的学法突出探究与发现,通过创设情景激发兴趣,在与教师的互动交流中,获得本节课的知识与方法。 根据学生具体情况,我力求达到:1 、形成学生主动参与,自主探究的课堂气氛。2、掌握求和公式的方法特点,并能从梯形面积的角度认识公式。3 、提高学生类比化归,数形结合的能力。由于本课内容不多,难度

9、不大,相信大多数学生都能掌握本课知识,实现预期的目标。五、教学反思根据教学经历和学生的反馈信息,笔者对本课有如下五点反思:(1)根据实际教学情况,学生比较容易掌握本课知识。在教学过程中,我重点突出了学生活动,设计了四个活动环节:(1)公式的探究活动;(2)公式的认识(3)公式的应用(4)学生课后的拓展学习。(2)本课特别强调了几何直观,我不仅对求和公式给出了几何解释,也对部分习题给出了几何解释,体现了数形结合的思想方法。(3)由于高斯求和法众所周知,于是我补充了我国古代研究数列求和的情况,但由于时间关系不能展开讲解,所以如何在课后引导学生进行了解是一个值得研究的问题。(4)本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去。(5)目标达成 本课注重在课堂教学活动中实现目标。 提出实际问题 知识与技能目标1 例题讲解 知识与技能目标2 深化理解 知识与技能目标3 活动参与 过程与方法目标 感悟数学史 情感与价值目标4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服