1、有理数的加法(二)教学目标:经历有理数加法运算律的探索过程,理解有理数加法的运算律2,能用运算律简化有理数加法的运算3,使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力教学难点:合理运用运算律知识重点:加法交换律和结合律,及其合理、灵活的运用教学过程(师生活动)设置情境引入课题:回顾复习:小学时已学过的加法运算律有哪几条?学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题分析问题探究新知:探讨加法运算律在有理数范围内是否适用 1,有理数加法交换律的学习 问题1:我们如何知道加
2、法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证) 问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充) 教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变” 问题3 :你能把有理数加法的交换律用字母来表示吗?由学生回答得出a+b=b+a后,教师说明:1式子中的字母分别表示任意的一个有理数(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。(2)在同一个式子中,同一个字母表示同一个数2,有理数加法结合律的学习 (基本步骤同于加法交换律的学习)讨论交流解决问题:思考:如果四个或四个
3、以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点例1计算: (1)16+(25)十24(35); (2)(2.48)(4.33)(7.52)(4.33) 师生共同分析完成,如第(1)题,教师板书: 解:(1)原式=16+24+ (-25)十(-35)(此时教师问:依据是什么?) (16+24)(-25)(-35)(依据是什么?) =40(一60) =20解题后反思:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能
4、凑整的先凑整等等)例2教科书第24页例4. 这题可这样处理:I1,让学生估计一下总重量是超过标准重量还是不足标准重量2,让学生思考如何计算,学生能给教科书提供的解法1.即先10袋小麦的总质量,再计算总计超过多千克。此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。并比较这两种解法。(这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。课堂练习:教科书第25页练习课堂小结:必做题:第31页习题3.1第2、9、10教学反思:阅读教科书第25页“实验与探究”有兴趣的可完成幻方。本节课在开始时
5、就先复习小学时学的加法运算律,然后提出一个富有启发性且具有探索意义的问题:“我们如何知道加法的交换律在有理数范围内是否适用?然后让学生通过一些实际例子来验证尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性(在小学、中学阶段,对运算律都不介绍证明方法,只结合具体例子做些脸证) 2,注重学生学习方式的改变,提倡小组合作交流,让每个学生都在与同伴的交流中获益,同时也注重师生之间的交流对话,教师适时引导 3,重视数感的培养学生数感的养成不是一朝一夕能达成的,在教学中应充分挖掘学生能力的生长点,数感也是如此,例2中在计算之前让学生估算之意就在于此 4,有理数的运算,既要注意减少一些繁、难的练习题,又要注意掌握有理数的运算需要一定量的练习更要强调的是算理,要求学生能说出每一步计算的依据 5,例1解题后的反思,例2多样化解法的比较,设计意图在于培养学生良好的学习 习惯。