ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:311.50KB ,
资源ID:5638606      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5638606.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(应用回归分析第九章部分答案.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

应用回归分析第九章部分答案.doc

1、第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如:(1) 乘性误差项,模型形式为,(2) 加性误差项,模型形式为。对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。表9.14生产率x(单位/周) 1000200030

2、003500400045005000废品率y(%)5.26.56.88.110.210.313.0解:先画出散点图如下图:从散点图大致可以判断出x和y之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。(1)二次曲线SPSS输出结果如下:从上表可以得到回归方程为:由x的系数检验P值大于0.05,得到x的系数未通过显著性检验。由x2的系数检验P值小于0.05,得到x2的系数通过了显著性检验。(2)指数曲线从上表可以得到回归方程为:由参数检验P值00.05,得到回归方程的参数都非常显著。从R2值,的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。9.3 已知变

3、量x与y的样本数据如表9.15,画出散点图,试用e/x来拟合回归模型,假设:(1) 乘性误差项,模型形式为y=e/xe(2) 加性误差项,模型形式为y=e/x+。表9.15序号xy序号xy序号xy14.200.08663.200.150112.200.35024.060.09073.000.170122.000.44033.800.10082.800.190131.800.62043.600.12092.600.220141.600.94053.400.130102.400.240151.401.620解: 散点图:(1) 乘性误差项,模型形式为y=e/xe线性化:lny=ln+/x + 令y

4、1=lny, a=ln,x1=1/x .做y1与x1的线性回归,SPSS输出结果如下:从以上结果可以得到回归方程为:y1=-3.856+6.08x1 F检验和t检验的P值00,0b10.994,得到回归效果比线性拟合要好,且:,回归方程为:。最后看拟合效果,由sequence画图:得到回归效果很好,而且较优于线性回归。9.5表9.17(书上233页,此处略)数据中GDP和投资额K都是用定基居民消费价格指数(CPI)缩减后的,以1978年的价格指数为100。(1) 用线性化乘性误差项模型拟合C-D生产函数;(2) 用非线性最小二乘拟合加性误差项模型的C-D生产函数;(3) 对线性化检验自相关,如

5、果存在自相关则用自回归方法改进;(4) 对线性化检验多重共线性,如果存在多重共线性则用岭回归方法改进;解:(1)对乘法误差项模型可通过两边取对数转化成线性模型。lny=lnA+ a lnK+ b lnL令y=lny,0=lnA,x1=lnK,x2=lnL,则转化为线性回归方程:y=0+ a x1+ b x2+ eSPSS输出结果如下:模型综述表从模型综述表中可以看到,调整后的为0.993,说明C-D生产函数拟合效果很好,也说明GDP的增长是一个指数模型。方差分析表从方差分析表中可以看到,F值很大,P值为零,说明模型通过了检验,这与上述分析结果一致。系数表根据系数表显示,回归方程为:尽管模型通过

6、了检验,但是也可以看到,常数项没有通过检验,但在这个模型里,当lnK和lnL都为零时,lnY为-1.785,即当K和L都为1时,GDP为0.168,也就是说当投入资本和劳动力都为1个单位时,GDP将增加0.168个单位,这种解释在我们的承受范围内,可以认为模型可以用。最终方程结果为:y=0.618K0.801 L0.404(2) 用非线性最小二乘法拟合加性误差项模型的C-D生产函数;上述假设误差是乘性的,现假设误差是加性的情况下使用非线性最小二乘法估计。初值采用(1)中参数的结果,SPSS输出结果如下:参数估计表SPSS经过多步迭代,最终得到的稳定参数值为P=0.407,a=0.868,b=0

7、.270y=0.407K0.868 L0.270为了比较这两个方程,我们观察下面两个图线性回归估计拟合曲线图非线性最小二乘估计拟合曲线图我们知道,乘性误差相当于是异方差的,做了对数变换后,乘性误差转为加性误差,这种情况下认为方差是相等的,那么第一种情况(对数变换线性化)就大大低估了GDP数值大的项,因此,它对GDP前期拟合的很好,而在后期偏差就变大了,同时也会受到自变量之间的自相关和多重共线性的综合影响;非线性最小二乘法完全依赖数据,如果自变量之间存在比较严重的异方差、自相关以及多重共线性,将对拟合结果造成很大的影响。因此,不排除异方差、自相关以及多重共线性的存在。(3) 对线性化回归模型采用

8、DW检验自相关,结果如下:模型综述表DW=0.7151.45,认为消除了自相关;方差分析表中可以看到F值很大,P值为零,说明模型通过了检验。从系数表可得回归方程:再迭代回去,最终得方程为:LnytLnyt-1.8590.755(LnKtLnKt) 0.465(LnLtLnLt)(4) 对线性化回归方程通过VIF检验多重共线性:方差分析表系数表多重共线性诊断表直观法:从模型综述表上可以看到,F值很大,而t值很小,这是多重共线性造成的影响;VIF检验法:从系数表上可以看到,VIF=1310,也说明多重共线性的存在;条件数:从诊断表上可以看到,最大的条件数是429,远远大于了100,所以自变量之间存

9、在较为严重的多重共线性。利用岭回归改进: R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF K K RSQ LNK LNL_ _ _ _.00000 .99394 .860706 .141014.05000 .99015 .646381 .330432.10000 .98639 .577758 .375355.15000 .98260 .539715 .390822.20000 .97843 .513383 .395623.25000 .97379 .492922 .395526.30000 .96869 .475918 .39288

10、2.35000 .96318 .461184 .388818.40000 .95730 .448063 .383937.45000 .95109 .436158 .378587.50000 .94462 .425211 .372979.55000 .93791 .415047 .367248.60000 .93101 .405541 .361481.65000 .92395 .396598 .355735.70000 .91677 .388147 .350049从岭迹图观察,当k=0.2时,变量基本趋于稳定取k=0.2进行岭回归, SPSS输出结果为:=0.479,=1.127从岭回归给出的结果来看,说明劳动力L较资金K对GDP的影响较大,而我国属于人口大国,就业人数对GDP的贡献不一定有显著的影响,相反,资金对GDP的影响按常理来说是非常显著的,这点普通最小二乘法给出了合理的解释,但是,岭回归在理论上很可信的。总之,影响统计的因素有很多,例如统计员的失误、国家政策等,造成函数系数的不稳定。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服