ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:181KB ,
资源ID:5595987      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5595987.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(等腰三角形教学设计案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等腰三角形教学设计案.doc

1、等腰三角形教学目标 1等腰三角形的概念;2探索并证明等腰三角形的性质定理(1)等腰三角形的两底角相等.(2)等腰三角形底边上的高,中线,及顶角的平分线互相重合。3.引导学生动手操作、观察,培养分类讨论和添加辅助线解决问题的能力。 教学重点 1探索并证明等腰三角形的性质定理。 教学难点 等腰三角形“三线合一“的性质 课前预习1,等腰三角形的两个底角 ,简写 。2,等腰三角形顶角的平分线垂直平分 3等腰三角形底边的中线平分 ,并且垂直 。教学过程一、提出问题,创设情境 在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变

2、换来设计一些美丽的图案这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是 问题:那什么样的三角形是轴对称图形? 满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形来源:学|科|网Z|X|X|K 我们这节课就来认识一种成轴对称图形的三角形等腰三角形 二、探究新知要求学生通过自己的思考来做一个等腰三角形(让学生动手操作)来源:学|科|网 作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到

3、一个等腰三角形 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角来源:学科网 思考:来源:Z.xx.k.Com 1等腰三角形是轴对称图形吗?请找出它的对称轴 2等腰三角形的两底角有什么关系? 3顶角的平分线所在的直线是等腰三角形的对称轴吗? 4底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 结论:等腰三角形是轴对称图形它的对称轴是顶角的平分线所在的直线因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形

4、,它的对称轴是顶角的平分线所在的直线 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系 沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高 由此可以得到等腰三角形的性质: 1等腰三角形的两个底角相等(简写成“等边对等角”) 2等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”) 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质同学们现在就动手来写出这些证明过程)来

5、源:学科网 如右图,在ABC中,AB=AC,作底边BC的中线AD,因为 所以BADCAD(SSS) 所以B=C 如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,因为 所以BADCAD 所以BD=CD,BDA=CDA=BDC=90 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数 分析:根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A再由三角形内角和为180,就可求出ABC的三个内角 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷 解:因为AB=AC,B

6、D=BC=AD, 所以ABC=C=BDC A=ABD(等边对等角) 设A=x,则 BDC=A+ABD=2x,来源:Zxxk.Com 从而ABC=C=BDC=2x 于是在ABC中,有 A+ABC+C=x+2x+2x=180, 解得x=36 在ABC中,A=35,ABC=C=72 师下面我们通过练习来巩固这节课所学的知识 三、随堂练习(一)课本练习 1、2。四、课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们五、作业 (一)课本1、4、8题六、板书设计 12311 等腰三角形(一) 一、设计方案作出一个等腰三角形 二、等腰三角形性质 1等边对等角 2三线合一

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服