ImageVerifierCode 换一换
格式:DOC , 页数:36 ,大小:2.19MB ,
资源ID:5587953      下载积分:9 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5587953.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2020-2021备战中考数学二次函数综合练习题含答案.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020-2021备战中考数学二次函数综合练习题含答案.doc

1、2020-2021备战中考数学二次函数综合练习题含答案一、二次函数1已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PDy轴交直线AC于点D(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MAMC|最大?若存在请求出点M的坐标,若不存在请说明理由【答案】(1)y=x24x+3;(2);(3)点P(1,0)或(2,1);(4)M(2,3)【解析】试题

2、分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)APD是直角时,点P与点B重合,求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MAMC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可试题解析:解:(1)抛物线y=x2+bx+c过点A(3,0),B(1

3、,0),解得,抛物线解析式为y=x24x+3;(2)令x=0,则y=3,点C(0,3),则直线AC的解析式为y=x+3,设点P(x,x24x+3)PDy轴,点D(x,x+3),PD=(x+3)(x24x+3)=x2+3x=(x)2+a=10,当x=时,线段PD的长度有最大值;(3)APD是直角时,点P与点B重合,此时,点P(1,0),y=x24x+3=(x2)21,抛物线的顶点坐标为(2,1)A(3,0),点P为在抛物线顶点时,PAD=45+45=90,此时,点P(2,1)综上所述:点P(1,0)或(2,1)时,APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,MA=MB,由

4、三角形的三边关系,|MAMC|BC,当M、B、C三点共线时,|MAMC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k0),则,解得:,直线BC的解析式为y=3x+3抛物线y=x24x+3的对称轴为直线x=2,当x=2时,y=32+3=3,点M(2,3),即,抛物线对称轴上存在点M(2,3),使|MAMC|最大点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键2已知,

5、点M为二次函数y(xb)2+4b+1图象的顶点,直线ymx+5分别交x轴正半轴,y轴于点A,B(1)判断顶点M是否在直线y4x+1上,并说明理由(2)如图1,若二次函数图象也经过点A,B,且mx+5(xb)2+4b+1,根据图象,写出x的取值范围(3)如图2,点A坐标为(5,0),点M在AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小【答案】(1)点M在直线y4x+1上;理由见解析;(2)x的取值范围是x0或x5;(3)当0b时,y1y2,当b时,y1y2,当b时,y1y2【解析】【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可

6、得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案【详解】(1)点M为二次函数y(xb)2+4b+1图象的顶点,M的坐标是(b,4b+1),把xb代入y4x+1,得y4b+1,点M在直线y4x+1上;(2)如图1,直线ymx+5交y轴于点B,B点坐标为(0,5)又B在抛物线上,5(0b)2+4b+15,解得b2,二次函数的解析是为y(x2)2+9,当y0时,(x2)2+90,解得x15,x21,A(5,0)由图象,得当mx+5(xb)2+4b+1时,x的取值范

7、围是x0或x5;(3)如图2,直线y4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为yx+5,联立EF,AB得方程组,解得,点E(,),F(0,1)点M在AOB内,14b+1,0b当点C,D关于抛物线的对称轴对称时,bb,b,且二次函数图象开口向下,顶点M在直线y4x+1上,综上:当0b时,y1y2,当b时,y1y2,当b时,y1y2【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a0时,

8、点与对称轴的距离越小函数值越大3如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将AOC绕平面内某点H顺时针旋转90,得到A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数

9、和点A1的横坐标【答案】(1)y=-+x+2;(2)存在,Q(3,2)或Q(-1,0);(3)两个和谐点,A1的横坐标是1,.【解析】【分析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解; (2)分两种情况分别讨论,当QBM=90或MQB=90,即可求得Q点的坐标 (3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1), 当A1、C1在抛物线上时,A1的横坐标是1; 当O1、C1在抛物线上时,A1的横坐标是2;【详解】解:(1)设抛物线解析式为y=ax2+bx+c,将点A(-1,0),B(4,

10、0),C(0,2)代入解析式,y=-+x+2;(2)点C与点D关于x轴对称,D(0,-2)设直线BD的解析式为y=kx-2将(4,0)代入得:4k-2=0,k=直线BD的解析式为y=x-2当P点与A点重合时,BQM是直角三角形,此时Q(-1,0);当BQBD时,BQM是直角三角形,则直线BQ的直线解析式为y=-2x+8,-2x+8=-+x+2,可求x=3或x=4(舍)x=3;Q(3,2)或Q(-1,0);(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),当A1、C1在抛物线上时,A1的横坐标是1;当O1、C1在抛物线上时,A1的横坐标是;【点

11、睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键4函数的图象记为,函数的图象记为,其中为常数,与合起来的图象记为.()若过点时,求的值;()若的顶点在直线上,求的值;()设在上最高点的纵坐标为,当时,求的取值范围.【答案】();();().【解析】【分析】()将点C的坐标代入的解析式即可求出m的值;()先求出抛物线的顶点坐标,再根据顶点在直线上得出关于m的方程,解之即可()先求出抛物线的顶点坐标,结合()抛物线的顶点坐标,和x的取值范围,分三种情形讨论求解即可;【详解】解:()将点代入的解析式,解得()抛物

12、线的顶点坐标为,令,得,()抛物线的顶点,抛物线的顶点,当时,最高点是抛物线G1的顶点,解得当时,G1中(2,2m-1)是最高点,2m-12m-1,解得当时,G2中(-4,4m-9)是最高点,4m-94m-9,解得.综上所述,即为所求.【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题5如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使

13、NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由(4)若P为抛物线上一点,过P作PQBC于Q,在y轴左侧的抛物线是否存在点P使CPQBCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由【答案】(1)二次函数的解析式为:y=-x2-x+2;(2)最大值为1,此时N(-1,2);(3)M的坐标为(-1,0)或(1,0)或(-,0);(4)点P的坐标为:(-1,2)或(-,-)【解析】【分析】(1)利用交点式求二次函数的解析式;(2)

14、求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:如图4,点P1与点C关于抛物线的对称轴对称时符合条件;如图5,图3中的M(-,0)时,MB=MC,设CM与抛物线交于点P2,则CP2QBCO,P2为直线CM的抛物线的交点【详解】(1)二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),设二次

15、函数的解析式为:y=a(x+2)(x-1),把C(0,2)代入得:2=a(0+2)(0-1),a=-1,y=-(x+2)(x-1)=-x2-x+2,二次函数的解析式为:y=-x2-x+2;(2)如图1,过N作NDy轴,交AC于D,设N(n,-n2-n+2),设直线AC的解析式为:y=kx+b,把A(-2,0)、C(0,2)代入得:,解得:,直线AC的解析式为:y=x+2,D(n,n+2),ND=(-n2-n+2)-(n+2)=-n2-2n,SANC=2-n2-2n=-n2-2n=-(n+1)2+1,当n=-1时,ANC的面积有最大值为1,此时N(-1,2),(3)存在,分三种情况:如图2,当B

16、C=CM1时,M1(-1,0);如图2,由勾股定理得:BC=,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1-,0),M3(1+,0);如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,M4在x轴的负半轴上,M4(-,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(-1,0)或(1,0)或(-,0);(4)存在两种情况:如图4,过C作x轴的平行线交抛物线于P1,过P1作P1QBC,此时,CP1QBCO,点P1与点C关于抛

17、物线的对称轴对称, P1(-1,2),如图5,由(3)知:当M(-,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2QBC,此时,CP2QBCO,易得直线CM的解析式为:y=x+2,则,解得:P2(-,-),综上所述,点P的坐标为:(-1,2)或(-,-)【点睛】本题是二次函数的综合题,计算量大,考查了利用待定系数法求函数的解析式、利用函数解析式求其交点坐标、三角形相似的性质和判定、等腰三角形的性质和判定,是一个不错的二次函数与几何图形的综合题,采用了分类讨论的思想,第三问和第四问要考虑周全,不要丢解6在平面直角坐标系中,抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(

18、0,3)(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EFx轴于点F,N是线段EF上一动点,M(m,0)是x轴一个动点,若MNC90,请求出m的取值范围【答案】(1)yx2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3);(3)【解析】【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3t),即可得D(t,t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)直角三角形斜边上的中线等

19、于斜边的一半列出关系式m(n)2,然后根据n的取值得到最小值【详解】解:(1)抛物线yx2+bx+c经过点A、B、C,A(1,0),C(0,3),解得b2,c3故该抛物线解析式为:yx2+2x+3(2)令x2+2x+30,解得x11,x23,即B(3,0),设直线BC的解析式为ykx+b,则,解得:k=-1,b=3故直线BC的解析式为yx+3;设P(t,3t),D(t,t2+2t+3),PD(t2+2t+3)(3t)t2+3t,OBOC3,BOC是等腰直角三角形,OCB45,当CDPC时,则CPDCDP,PDy轴,CPDOCB45,CDP45,PCD90,直线CD的解析式为yx+3,解得或D(

20、1,4),此时P(1,2);当CDPD时,则DCPCPD45,CDP90,CDx轴,D点的纵坐标为3,代入yx2+2x+3得,3x2+2x+3,解得x0或x2,此时P(2,1);当PCPD时,PCt,tt2+3t,解得t0或t3,此时P(3,);综上,当CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3,)(3)如图2,由(1)yx2+2x+3(x1)2+4,E(1,4),设N(1,n),则0n4,取CM的中点Q(,),MNC90,NQCM,4NQ2CM2,NQ2(1)2+(n)2,4(1)2+(n)2m2+9,整理得,m(n)2,0n4,当n时,m最小值,n4时,m5,综上,m的

21、取值范围为:m5【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用7二次函数y=x2-2mx+3(m)的图象与x轴交于点A(a,0)和点B(a+n,0)(n0且n为整数),与y轴交于C点(1)若a=1,求二次函数关系式;求ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=【解析】试题分析:(1)首先根据a=1求得A的坐标,然

22、后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积; (2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m-m)2-m2+3,求得m的值即可确定a的值试题解析:(1)a=1,A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,y=x2-4x+3;在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,A(1,0)、B(3,0),

23、AB=2再根据解析式求出C点坐标为(0,3), OC=3,ABC的面积=23=3;(2)y=x2-2mx+3=(x-m)2-m2+3,对称轴为直线x=m, 二次函数y=x2-2mx+3的图象与x轴交于点A和点B点A和点B关于直线x=m对称, a+n-m=m-a, a=m-;(3)y=x2-2mx+3(m)化为顶点式为y=(x-m)2-m2+3(m)当a为整数,因为n0且n为整数 所以a+n是整数, 线段AB(包括A、B)上有且只有三个点的横坐标是整数, n=2, a=m-1,A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,m2-4=0,m=2,m=-2(舍去), a

24、=2-1=1, 当a不是整数,因为n0且n为整数 所以a+n不是整数, 线段AB(包括A、B)上有且只有三个点的横坐标是整数, n=3, a=m-A(m-,0)代入y=(x-m)2-m2+3得0=(m-m)2-m2+3,m2=,m=,m=-(舍去),a=,综上所述:a=1或a=考点:二次函数综合题8如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(

25、3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)【答案】(1)y=x24x+3;(2)(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出

26、CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+

27、1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题9已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C

28、(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由【答案】(1)抛物线解析式为y=x2+2x+6;(2)当t=3时,PAB的面积有最大值;(3)点P(4,6)【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,t2+2t+6),则N(t,t+6),由SPAB=

29、SPAN+SPBN=PNAG+PNBM=PNOB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45,结合DPE=90知若PDE为等腰直角三角形,则EDP=45,从而得出点E与点A重合,求出y=6时x的值即可得出答案【详解】(1)抛物线过点B(6,0)、C(2,0),设抛物线解析式为y=a(x6)(x+2),将点A(0,6)代入,得:12a=6,解得:a=,所以抛物线解析式为y=(x6)(x+2)=x2+2x+6;(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,设直线AB解析式为y=kx+b,将点A(0

30、,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=x+6,设P(t,t2+2t+6)其中0t6,则N(t,t+6),PN=PMMN=t2+2t+6(t+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+SPBN=PNAG+PNBM=PN(AG+BM)=PNOB=(t2+3t)6=t2+9t=(t3)2+,当t=3时,PAB的面积有最大值;(3)如图2,PHOB于H,DHB=AOB=90,DHAO,OA=OB=6,BDH=BAO=45,PEx轴、PDx轴,DPE=90,若PDE为等腰直角三角形,则EDP=45,EDP与BDH互为对顶角,即点E与点A重合,则当y=6时,x2+

31、2x+6=6,解得:x=0(舍)或x=4,即点P(4,6)【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.10如图,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作ACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其

32、最大值; (3)如图,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全

33、等三角形,证明OMPPNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),OE平分AOB,AOB=90,AOE=45,AOE是等腰直角三角形,AE=OA=3,E(3,3),易得OE的解析式为:y=x,过P作PGy轴,交OE于点G,G(m,m),PG=m-(m2-4m+3)=-m2+5m-3,S四边形AOPE=SAOE+SPOE,=33+

34、PGAE,=+3(-m2+5m-3),=-m2+m,=(m-)2+,-0,当m=时,S有最大值是;(3)如图3,过P作MNy轴,交y轴于M,交l于N,OPF是等腰直角三角形,且OP=PF,易得OMPPNF,OM=PN,P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,P的坐标为(,)或(,);如图4,过P作MNx轴于N,过F作FMMN于M,同理得ONPPMF,PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,)点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及

35、解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题11如图,抛物线yax2+bx+c经过A(3,0),B(1,0),C(0,3)三点(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若PAC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与ABC相似?若存在,求点M的坐标;若不存在,请说明理由【答案】(1)yx22x+3;(2)点P的坐标为(1,4)或(2,3);(3)存在,(,)或(,),见解析.【解析】【分析】(1)利用待定系数法,然后将A、B、C

36、的坐标代入解析式即可求得二次函数的解析式;(2)过P点作PQ垂直x轴,交AC于Q,把APC分成两个APQ与CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积(3)通过三角形函数计算可得DAO=ACB,使得以M,A,O为顶点的三角形与ABC相似,则有两种情况,AOM=CAB=45,即OM为y=-x,若AOM=CBA,则OM为y=-3x+3,然后由直线解析式可求OM与AD的交点M【详解】(1)把A(3,0),B(1,0),C(0,3)代入抛物线解析式yax2+bx+c得,解得,所以抛物线的函数表达式为yx22x+3(2)如解(2)图1,过P点作PQ平行y

37、轴,交AC于Q点,A(3,0),C(0,3),直线AC解析式为yx+3,设P点坐标为(x,x22x+3),则Q点坐标为(x,x+3),PQx22x+3(x+3)x23xSPAC,解得:x11,x22当x1时,P点坐标为(1,4),当x2时,P点坐标为(2,3),综上所述:若PAC面积为3,点P的坐标为(1,4)或(2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,D为抛物线yx22x+3的顶点,D点坐标为(1,4),又A(3,0),直线AC为y2x+4,AF2,DF4,tanPAB2,B(1,0),C(0,3)tanABC3,BC,sinABC,直线BC解

38、析式为y3x+3AC4,AEACsinABC,BE,CE,tanACB,tanACBtanPAB2,ACBPAB,使得以M,A,O为顶点的三角形与ABC相似,则有两种情况,如解(3)图2当AOMCAB45时,ABCOMA,即OM为yx,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(,)若AOMCBA,即OMBC,直线BC解析式为y3x+3直线OM为y3x,设直线OM与AD的交点M(x,y)则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与ABC相似的点M,其坐标为(,)或(,)【点睛】本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题

39、目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系12(2017南宁,第26题,10分)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值【答案】(1)a=,A(,0),抛物线的对称轴为x=;(2)点P的坐标为(,0)或(,4);(3)【解析】试题分析:(1

40、)由点C的坐标为(0,3),可知9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得CAO=60,依据AE为BAC的角平分线可求得DAO=30,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标设点P的坐标为(,a)依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将

41、AM和AN的长代入化简即可试题解析:(1)C(0,3),9a=3,解得:a=令y=0得:,a0,解得:x=或x=,点A的坐标为(,0),B(,0),抛物线的对称轴为x=(2)OA=,OC=3,tanCAO=,CAO=60AE为BAC的平分线,DAO=30,DO=AO=1,点D的坐标为(0,1)设点P的坐标为(,a)依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a1)2当AD=PA时,4=12+a2,方程无解当AD=DP时,4=3+(a1)2,解得a=0或a=2(舍去),点P的坐标为(,0)当AP=DP时,12+a2=3+(a1)2,解得a=4,点P的坐标为(,4)综上

42、所述,点P的坐标为(,0)或(,4)(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:,解得:m=,直线AC的解析式为设直线MN的解析式为y=kx+1把y=0代入y=kx+1得:kx+1=0,解得:x=,点N的坐标为(,0),AN=将与y=kx+1联立解得:x=,点M的横坐标为过点M作MGx轴,垂足为G则AG=MAG=60,AGM=90,AM=2AG=,= = =点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M的坐标和点N的坐标是解答问题(3)的关键13如图,已知A(2,0),B(4,0),抛

43、物线y=ax2+bx1过A、B两点,并与过A点的直线y=x1交于点C(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由【答案】(1)抛物线解析式为:y=,抛物线对称轴为直线x=1;(2)存在P点坐标为(1,);(3)N点坐标为(4,3)或(2,1)【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO最小即可;(3)利用相似三角形对应

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服