1、2020-2021备战中考数学二次函数综合练习题含答案一、二次函数1已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PDy轴交直线AC于点D(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MAMC|最大?若存在请求出点M的坐标,若不存在请说明理由【答案】(1)y=x24x+3;(2);(3)点P(1,0)或(2,1);(4)M(2,3)【解析】试题
2、分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)APD是直角时,点P与点B重合,求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MAMC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可试题解析:解:(1)抛物线y=x2+bx+c过点A(3,0),B(1
3、,0),解得,抛物线解析式为y=x24x+3;(2)令x=0,则y=3,点C(0,3),则直线AC的解析式为y=x+3,设点P(x,x24x+3)PDy轴,点D(x,x+3),PD=(x+3)(x24x+3)=x2+3x=(x)2+a=10,当x=时,线段PD的长度有最大值;(3)APD是直角时,点P与点B重合,此时,点P(1,0),y=x24x+3=(x2)21,抛物线的顶点坐标为(2,1)A(3,0),点P为在抛物线顶点时,PAD=45+45=90,此时,点P(2,1)综上所述:点P(1,0)或(2,1)时,APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,MA=MB,由
4、三角形的三边关系,|MAMC|BC,当M、B、C三点共线时,|MAMC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k0),则,解得:,直线BC的解析式为y=3x+3抛物线y=x24x+3的对称轴为直线x=2,当x=2时,y=32+3=3,点M(2,3),即,抛物线对称轴上存在点M(2,3),使|MAMC|最大点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键2已知,
5、点M为二次函数y(xb)2+4b+1图象的顶点,直线ymx+5分别交x轴正半轴,y轴于点A,B(1)判断顶点M是否在直线y4x+1上,并说明理由(2)如图1,若二次函数图象也经过点A,B,且mx+5(xb)2+4b+1,根据图象,写出x的取值范围(3)如图2,点A坐标为(5,0),点M在AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小【答案】(1)点M在直线y4x+1上;理由见解析;(2)x的取值范围是x0或x5;(3)当0b时,y1y2,当b时,y1y2,当b时,y1y2【解析】【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可
6、得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案【详解】(1)点M为二次函数y(xb)2+4b+1图象的顶点,M的坐标是(b,4b+1),把xb代入y4x+1,得y4b+1,点M在直线y4x+1上;(2)如图1,直线ymx+5交y轴于点B,B点坐标为(0,5)又B在抛物线上,5(0b)2+4b+15,解得b2,二次函数的解析是为y(x2)2+9,当y0时,(x2)2+90,解得x15,x21,A(5,0)由图象,得当mx+5(xb)2+4b+1时,x的取值范
7、围是x0或x5;(3)如图2,直线y4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为yx+5,联立EF,AB得方程组,解得,点E(,),F(0,1)点M在AOB内,14b+1,0b当点C,D关于抛物线的对称轴对称时,bb,b,且二次函数图象开口向下,顶点M在直线y4x+1上,综上:当0b时,y1y2,当b时,y1y2,当b时,y1y2【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a0时,
8、点与对称轴的距离越小函数值越大3如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将AOC绕平面内某点H顺时针旋转90,得到A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数
9、和点A1的横坐标【答案】(1)y=-+x+2;(2)存在,Q(3,2)或Q(-1,0);(3)两个和谐点,A1的横坐标是1,.【解析】【分析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解; (2)分两种情况分别讨论,当QBM=90或MQB=90,即可求得Q点的坐标 (3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1), 当A1、C1在抛物线上时,A1的横坐标是1; 当O1、C1在抛物线上时,A1的横坐标是2;【详解】解:(1)设抛物线解析式为y=ax2+bx+c,将点A(-1,0),B(4,
10、0),C(0,2)代入解析式,y=-+x+2;(2)点C与点D关于x轴对称,D(0,-2)设直线BD的解析式为y=kx-2将(4,0)代入得:4k-2=0,k=直线BD的解析式为y=x-2当P点与A点重合时,BQM是直角三角形,此时Q(-1,0);当BQBD时,BQM是直角三角形,则直线BQ的直线解析式为y=-2x+8,-2x+8=-+x+2,可求x=3或x=4(舍)x=3;Q(3,2)或Q(-1,0);(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),当A1、C1在抛物线上时,A1的横坐标是1;当O1、C1在抛物线上时,A1的横坐标是;【点
11、睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键4函数的图象记为,函数的图象记为,其中为常数,与合起来的图象记为.()若过点时,求的值;()若的顶点在直线上,求的值;()设在上最高点的纵坐标为,当时,求的取值范围.【答案】();();().【解析】【分析】()将点C的坐标代入的解析式即可求出m的值;()先求出抛物线的顶点坐标,再根据顶点在直线上得出关于m的方程,解之即可()先求出抛物线的顶点坐标,结合()抛物线的顶点坐标,和x的取值范围,分三种情形讨论求解即可;【详解】解:()将点代入的解析式,解得()抛物
12、线的顶点坐标为,令,得,()抛物线的顶点,抛物线的顶点,当时,最高点是抛物线G1的顶点,解得当时,G1中(2,2m-1)是最高点,2m-12m-1,解得当时,G2中(-4,4m-9)是最高点,4m-94m-9,解得.综上所述,即为所求.【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题5如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使
13、NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由(4)若P为抛物线上一点,过P作PQBC于Q,在y轴左侧的抛物线是否存在点P使CPQBCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由【答案】(1)二次函数的解析式为:y=-x2-x+2;(2)最大值为1,此时N(-1,2);(3)M的坐标为(-1,0)或(1,0)或(-,0);(4)点P的坐标为:(-1,2)或(-,-)【解析】【分析】(1)利用交点式求二次函数的解析式;(2)
14、求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:如图4,点P1与点C关于抛物线的对称轴对称时符合条件;如图5,图3中的M(-,0)时,MB=MC,设CM与抛物线交于点P2,则CP2QBCO,P2为直线CM的抛物线的交点【详解】(1)二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),设二次
15、函数的解析式为:y=a(x+2)(x-1),把C(0,2)代入得:2=a(0+2)(0-1),a=-1,y=-(x+2)(x-1)=-x2-x+2,二次函数的解析式为:y=-x2-x+2;(2)如图1,过N作NDy轴,交AC于D,设N(n,-n2-n+2),设直线AC的解析式为:y=kx+b,把A(-2,0)、C(0,2)代入得:,解得:,直线AC的解析式为:y=x+2,D(n,n+2),ND=(-n2-n+2)-(n+2)=-n2-2n,SANC=2-n2-2n=-n2-2n=-(n+1)2+1,当n=-1时,ANC的面积有最大值为1,此时N(-1,2),(3)存在,分三种情况:如图2,当B
16、C=CM1时,M1(-1,0);如图2,由勾股定理得:BC=,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1-,0),M3(1+,0);如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,M4在x轴的负半轴上,M4(-,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(-1,0)或(1,0)或(-,0);(4)存在两种情况:如图4,过C作x轴的平行线交抛物线于P1,过P1作P1QBC,此时,CP1QBCO,点P1与点C关于抛
17、物线的对称轴对称, P1(-1,2),如图5,由(3)知:当M(-,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2QBC,此时,CP2QBCO,易得直线CM的解析式为:y=x+2,则,解得:P2(-,-),综上所述,点P的坐标为:(-1,2)或(-,-)【点睛】本题是二次函数的综合题,计算量大,考查了利用待定系数法求函数的解析式、利用函数解析式求其交点坐标、三角形相似的性质和判定、等腰三角形的性质和判定,是一个不错的二次函数与几何图形的综合题,采用了分类讨论的思想,第三问和第四问要考虑周全,不要丢解6在平面直角坐标系中,抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(
18、0,3)(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EFx轴于点F,N是线段EF上一动点,M(m,0)是x轴一个动点,若MNC90,请求出m的取值范围【答案】(1)yx2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3);(3)【解析】【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3t),即可得D(t,t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)直角三角形斜边上的中线等
19、于斜边的一半列出关系式m(n)2,然后根据n的取值得到最小值【详解】解:(1)抛物线yx2+bx+c经过点A、B、C,A(1,0),C(0,3),解得b2,c3故该抛物线解析式为:yx2+2x+3(2)令x2+2x+30,解得x11,x23,即B(3,0),设直线BC的解析式为ykx+b,则,解得:k=-1,b=3故直线BC的解析式为yx+3;设P(t,3t),D(t,t2+2t+3),PD(t2+2t+3)(3t)t2+3t,OBOC3,BOC是等腰直角三角形,OCB45,当CDPC时,则CPDCDP,PDy轴,CPDOCB45,CDP45,PCD90,直线CD的解析式为yx+3,解得或D(
20、1,4),此时P(1,2);当CDPD时,则DCPCPD45,CDP90,CDx轴,D点的纵坐标为3,代入yx2+2x+3得,3x2+2x+3,解得x0或x2,此时P(2,1);当PCPD时,PCt,tt2+3t,解得t0或t3,此时P(3,);综上,当CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3,)(3)如图2,由(1)yx2+2x+3(x1)2+4,E(1,4),设N(1,n),则0n4,取CM的中点Q(,),MNC90,NQCM,4NQ2CM2,NQ2(1)2+(n)2,4(1)2+(n)2m2+9,整理得,m(n)2,0n4,当n时,m最小值,n4时,m5,综上,m的
21、取值范围为:m5【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用7二次函数y=x2-2mx+3(m)的图象与x轴交于点A(a,0)和点B(a+n,0)(n0且n为整数),与y轴交于C点(1)若a=1,求二次函数关系式;求ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=【解析】试题分析:(1)首先根据a=1求得A的坐标,然
22、后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积; (2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m-m)2-m2+3,求得m的值即可确定a的值试题解析:(1)a=1,A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,y=x2-4x+3;在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,A(1,0)、B(3,0),
23、AB=2再根据解析式求出C点坐标为(0,3), OC=3,ABC的面积=23=3;(2)y=x2-2mx+3=(x-m)2-m2+3,对称轴为直线x=m, 二次函数y=x2-2mx+3的图象与x轴交于点A和点B点A和点B关于直线x=m对称, a+n-m=m-a, a=m-;(3)y=x2-2mx+3(m)化为顶点式为y=(x-m)2-m2+3(m)当a为整数,因为n0且n为整数 所以a+n是整数, 线段AB(包括A、B)上有且只有三个点的横坐标是整数, n=2, a=m-1,A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,m2-4=0,m=2,m=-2(舍去), a
24、=2-1=1, 当a不是整数,因为n0且n为整数 所以a+n不是整数, 线段AB(包括A、B)上有且只有三个点的横坐标是整数, n=3, a=m-A(m-,0)代入y=(x-m)2-m2+3得0=(m-m)2-m2+3,m2=,m=,m=-(舍去),a=,综上所述:a=1或a=考点:二次函数综合题8如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(
25、3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)【答案】(1)y=x24x+3;(2)(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出
26、CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+
27、1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题9已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C
28、(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由【答案】(1)抛物线解析式为y=x2+2x+6;(2)当t=3时,PAB的面积有最大值;(3)点P(4,6)【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,t2+2t+6),则N(t,t+6),由SPAB=
29、SPAN+SPBN=PNAG+PNBM=PNOB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45,结合DPE=90知若PDE为等腰直角三角形,则EDP=45,从而得出点E与点A重合,求出y=6时x的值即可得出答案【详解】(1)抛物线过点B(6,0)、C(2,0),设抛物线解析式为y=a(x6)(x+2),将点A(0,6)代入,得:12a=6,解得:a=,所以抛物线解析式为y=(x6)(x+2)=x2+2x+6;(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,设直线AB解析式为y=kx+b,将点A(0
30、,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=x+6,设P(t,t2+2t+6)其中0t6,则N(t,t+6),PN=PMMN=t2+2t+6(t+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+SPBN=PNAG+PNBM=PN(AG+BM)=PNOB=(t2+3t)6=t2+9t=(t3)2+,当t=3时,PAB的面积有最大值;(3)如图2,PHOB于H,DHB=AOB=90,DHAO,OA=OB=6,BDH=BAO=45,PEx轴、PDx轴,DPE=90,若PDE为等腰直角三角形,则EDP=45,EDP与BDH互为对顶角,即点E与点A重合,则当y=6时,x2+
31、2x+6=6,解得:x=0(舍)或x=4,即点P(4,6)【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.10如图,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作ACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其
32、最大值; (3)如图,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全
33、等三角形,证明OMPPNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),OE平分AOB,AOB=90,AOE=45,AOE是等腰直角三角形,AE=OA=3,E(3,3),易得OE的解析式为:y=x,过P作PGy轴,交OE于点G,G(m,m),PG=m-(m2-4m+3)=-m2+5m-3,S四边形AOPE=SAOE+SPOE,=33+
34、PGAE,=+3(-m2+5m-3),=-m2+m,=(m-)2+,-0,当m=时,S有最大值是;(3)如图3,过P作MNy轴,交y轴于M,交l于N,OPF是等腰直角三角形,且OP=PF,易得OMPPNF,OM=PN,P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,P的坐标为(,)或(,);如图4,过P作MNx轴于N,过F作FMMN于M,同理得ONPPMF,PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,)点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及
35、解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题11如图,抛物线yax2+bx+c经过A(3,0),B(1,0),C(0,3)三点(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若PAC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与ABC相似?若存在,求点M的坐标;若不存在,请说明理由【答案】(1)yx22x+3;(2)点P的坐标为(1,4)或(2,3);(3)存在,(,)或(,),见解析.【解析】【分析】(1)利用待定系数法,然后将A、B、C
36、的坐标代入解析式即可求得二次函数的解析式;(2)过P点作PQ垂直x轴,交AC于Q,把APC分成两个APQ与CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积(3)通过三角形函数计算可得DAO=ACB,使得以M,A,O为顶点的三角形与ABC相似,则有两种情况,AOM=CAB=45,即OM为y=-x,若AOM=CBA,则OM为y=-3x+3,然后由直线解析式可求OM与AD的交点M【详解】(1)把A(3,0),B(1,0),C(0,3)代入抛物线解析式yax2+bx+c得,解得,所以抛物线的函数表达式为yx22x+3(2)如解(2)图1,过P点作PQ平行y
37、轴,交AC于Q点,A(3,0),C(0,3),直线AC解析式为yx+3,设P点坐标为(x,x22x+3),则Q点坐标为(x,x+3),PQx22x+3(x+3)x23xSPAC,解得:x11,x22当x1时,P点坐标为(1,4),当x2时,P点坐标为(2,3),综上所述:若PAC面积为3,点P的坐标为(1,4)或(2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,D为抛物线yx22x+3的顶点,D点坐标为(1,4),又A(3,0),直线AC为y2x+4,AF2,DF4,tanPAB2,B(1,0),C(0,3)tanABC3,BC,sinABC,直线BC解
38、析式为y3x+3AC4,AEACsinABC,BE,CE,tanACB,tanACBtanPAB2,ACBPAB,使得以M,A,O为顶点的三角形与ABC相似,则有两种情况,如解(3)图2当AOMCAB45时,ABCOMA,即OM为yx,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(,)若AOMCBA,即OMBC,直线BC解析式为y3x+3直线OM为y3x,设直线OM与AD的交点M(x,y)则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与ABC相似的点M,其坐标为(,)或(,)【点睛】本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题
39、目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系12(2017南宁,第26题,10分)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值【答案】(1)a=,A(,0),抛物线的对称轴为x=;(2)点P的坐标为(,0)或(,4);(3)【解析】试题分析:(1
40、)由点C的坐标为(0,3),可知9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得CAO=60,依据AE为BAC的角平分线可求得DAO=30,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标设点P的坐标为(,a)依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将
41、AM和AN的长代入化简即可试题解析:(1)C(0,3),9a=3,解得:a=令y=0得:,a0,解得:x=或x=,点A的坐标为(,0),B(,0),抛物线的对称轴为x=(2)OA=,OC=3,tanCAO=,CAO=60AE为BAC的平分线,DAO=30,DO=AO=1,点D的坐标为(0,1)设点P的坐标为(,a)依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a1)2当AD=PA时,4=12+a2,方程无解当AD=DP时,4=3+(a1)2,解得a=0或a=2(舍去),点P的坐标为(,0)当AP=DP时,12+a2=3+(a1)2,解得a=4,点P的坐标为(,4)综上
42、所述,点P的坐标为(,0)或(,4)(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:,解得:m=,直线AC的解析式为设直线MN的解析式为y=kx+1把y=0代入y=kx+1得:kx+1=0,解得:x=,点N的坐标为(,0),AN=将与y=kx+1联立解得:x=,点M的横坐标为过点M作MGx轴,垂足为G则AG=MAG=60,AGM=90,AM=2AG=,= = =点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M的坐标和点N的坐标是解答问题(3)的关键13如图,已知A(2,0),B(4,0),抛
43、物线y=ax2+bx1过A、B两点,并与过A点的直线y=x1交于点C(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由【答案】(1)抛物线解析式为:y=,抛物线对称轴为直线x=1;(2)存在P点坐标为(1,);(3)N点坐标为(4,3)或(2,1)【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO最小即可;(3)利用相似三角形对应
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100