ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:49KB ,
资源ID:5586625      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5586625.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《二元一次方程组的解法》.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《二元一次方程组的解法》.doc

1、二元一次方程组的解法代入消元法 第一课时教学目标:1、会用代入消元法解含有未知数系数为1的二元一次方程组。2、通过探求二元一次方程组的解法,经历把“二元”化“一元”的过程,从而初步体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。3、在数学学习活动中获得成功的体验,培养学习的自信心。教学重点、难点重点:用代入消元法解含有未知数系数为1的二元一次方程组。难点:将一个方程适当变形,用一个未知数表示另一个未知数,进而代入另一个方程实现正确消元。教学方法设计从实际问题与例题出发,让学生通过探索,逐步发现和掌握二元一次方程组的解法,理解代入法的基本思路,即将一个方程适当变

2、形,用一个未知数表示另一个未知数,进而代入另一个方程,实现消元。教学中应让学生充分地自主探索,通过观察、比较、思考、归纳来发现二元一次方程组的解法,体会化“二元”为“一元”,化“复杂”为“简单”,化“未知”为“已知”的化归思想。教学过程:一、 知识回顾:1.什么叫做二元一次方程?2.什么叫做二元一次方程组?3.什么叫做二元一次方程组的解?二、问题探知:问题:某种时装的价格是某种皮装价格的1.5倍,买5件皮装比2件时装贵700元。求每件时装和皮装的价格?你能用列方程的方法来解吗?能不能列方程组?解:设每件皮装的价格为x元,时装的价格为y 元。根据题意,得: ,思考:怎样求这个方程组的解?(让学生

3、独立思考,通过观察、比较、归纳来尝试分析,再进行小组交流,初步得出解法,教师要注意激发学生积极参与数学学习活动,提高求知欲望。同时也引导出本课内容:用代入消元法解二元一次方程)三、知识导学1、代入消元法:归纳总结:将二元一次方程组其中一个方程中的未知数用另一个未知数的代数式来表示,然后将它代入另一个方程消去一个未知数,转化为一个一元一次方程,从而求出二元一次方程的解。这样解二元一次方程组的方法叫做“代入消元法”。2、典例精讲:例1、解方程组 =+=.8 4X3yxy变式练习: 例2:解二元一次方程组:解由得 y7x.将代入,得 3x7x17,即x5.将x5代入,得 y2.所以(方程组的两个方程

4、中,没有一个是直接由一个未知数表示另一个未知数的形式,这里可通过学生独立思考,小组合作讨论得出解法,即选择其中一个方程,将这个方程中的一个未知数用另一个未知数来表示感谢,从而转化为导入二元一次方程组的形式。)2、再试一试:以上将方程中的y用x的代数式来表示,能将x用y的代数式来表示后代入来解吗?能将方程通过变形后代入来解吗?(通过再试一试,使学生发现解二元一次方程组可抓住其中未知数系数为1的二元一次方程,将其中的一个未知数用另外一个未知数的代数式 来表示感谢,再代入另外一个方程消元转化为一元一次方程来解。再一次突出了化“未知”为“已知”的化归思想。)3、请你概括一下上面解法的思路.四、实践与应

5、用:解下列二元一次方程组:1、2、3、 4、五、课堂小结:解二元一次方程组的基本思想,是将二元一次方程组的其中一个方程中的一个未知数用另一个未知数的代数式 来表示,通过“代入”另一个方程消去一个未知数,将方程组转化为一元一次方程来解,即化“二元”为“一元”的消元方法来解。用代入法解二元一次方程组的基本思路:先抓住其中未知数系数为1的那个二元一次方程,将它用另一个未知数的代数式 来表示,再代入另一个方程消元转化为一元一次方程来解。在解决有关数学问题时,我们常常采用化“未知”为“已知”的转化的思想方法。六、达标检测:用含有x的代数式表示y:(1) 2x+y=1 (2) y-3x+1=02、解方程组:(1) (2) (3)七、课后作业:完成练习册相应的练习题。3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服