ImageVerifierCode 换一换
格式:DOC , 页数:32 ,大小:1.07MB ,
资源ID:5586161      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5586161.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(大连市大连市第三十四中学七年级下册数学期末试卷试卷(word版含答案).doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

大连市大连市第三十四中学七年级下册数学期末试卷试卷(word版含答案).doc

1、大连市大连市第三十四中学七年级下册数学期末试卷试卷(word版含答案)一、解答题1如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由2已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(

2、1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 3如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)4如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,

3、直接写出的度数;若不存在请说明理由5已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3)如图4中,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数二、解答题6已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数

4、7已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)8已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,AMPPQN,PQ平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEP

5、N交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由9已知:和同一平面内的点(1)如图1,点在边上,过作交于,交于根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;(2)如图2,点在的延长线上,请判断与的位置关系,并说明理由(3)如图3,点是外部的一个动点过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形10综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形

6、是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由三、解答题11如图,在中,是高,是角平分线,()求、和的度数()若图形发生了变化,已知的两个角度数改为:当,则_当,时,则_当,时,则_当,时,则_()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论12(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若

7、B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值13操作示例:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在ABC中,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量关系为 (2)如图4,在ABC中,点D、E

8、分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .14如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A

9、+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值15直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,将ABC沿直线AB折叠,若点

10、C落在直线MN上,则ABO_(3)如图4,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则EAF ;在AEF中,如果有一个角是另一个角的倍,求ABO的度数.【参考答案】一、解答题1(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后解析:(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQ

11、HDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+B

12、CG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握

13、辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点2(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根解析:(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的

14、方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,B

15、PBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题3(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD解析:(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得

16、ABCD,则ABCDHE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NPCD,过点M作QMCD,由(1)得ABCD,则NPCDABQM,根据和,得出根据CDPNQM,DENB,得出即根据NPAB,得出再由,得出由ABQM,得出因为,代入的式子即可求出【详解】(1)过点E作EFCD,如图,EFCD, , EFAB,CDAB;(2)过点E作HECD,如图,设 由(1)得ABCD,则ABCDHE,又平分,即解得:即;(3)过点N作NPCD,过点M作QMCD,如图,由(1)得ABCD,则NPCDABQM,NPCD,CDQM,,又, , 又PNA

17、B, , 又ABQM, 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系4(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EF

18、C=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E

19、的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主

20、要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键5(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据

21、平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2B

22、MFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键二、解答题6(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;

23、(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5

24、-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数

25、形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点7(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由

26、(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键8(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得

27、QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,ABCDPR,AMPMPR,PQNRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQNPQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF180,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQN,NQEPQN+

28、EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(1803)18090+2390+AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键9(1)图见解析,理由见解析;(2),理由见解析;(3)图见解析,或【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,理由见解析;(2),理由见解析;(3)图见解析,或【分析】(1)根据平行线的画法补全图形即可

29、得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得【详解】(1)由题意,补全图形如下:,理由如下:,;(2),理由如下:如图,延长BA交DF于点O,;(3)由题意,有以下两种情况:如图3-1,理由如下:,由对顶角相等得:,;如图3-2,理由如下:,【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键10(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再

30、由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题

31、是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键三、解答题11(1)30,70,20;(2)15,5,0,5;(3)当时,;当时,【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30,70,20;(2)15,5,0,5;(3)当时,;当时,【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质

32、分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案【详解】(1), 平分,是高, , , , (2)当,时, 平分,是高, , , ;当,时, 平分,是高, , , ;当,时, 平分,是高, , , ;当,时, 平分,是高, , , (3)当 时,即时, 平分,是高, , , ;当 时,即时, 平分,是高, , , ;综上所述,当时,;当时,【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键12(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)

33、依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC解析:(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC的外角,可得B=CAE-ACB,再根据CAD是ACF的外角,即可得到F=CAD-ACF=CAE-ACB=(CAE-ACB)=B;(2)由(1)可得,F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到H=90+ABG,进而得到F+H=90+CBG=180【详解】解:(1)AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是

34、ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)B45,故答案为45;AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)Ba;(2)由(1)可得,FABC,AGB与GAB的角平分线交于点H,AGHAGB,GAHGAB,H180(AGH+GAH)180(AGB+GAB)180(180ABG)90+ABG,F+HABC+90+ABG90+CBG180,F+H的值不变,是定值180【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用

35、,熟练运用定理是解题的关键13解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD的面积,EOC的

36、面积=BOC的面积的一半, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE,则有BE=ED=DC,ABE的面积=AED的面积=ADC的面积= S2,S1=2S2(2)连接AOCO=DO,BOD的面积=BOC的面积=3,AOC的面积=AOD的面积BO=2EO,EOC的面积=BOC的面积的一半=

37、1.5, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,四边形ADOE的面积为=a+b=6+4.5=10.514(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服