ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:59.51KB ,
资源ID:5582146      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5582146.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版同底数幂的乘法教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版同底数幂的乘法教案.doc

1、同底数幂的乘法刘艳教学目标1、 理解法则中“底数不变、指数相加”的意义;能熟练地应用同底数幂乘法法则进行计算。 2、从同底数幂乘法法则的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力和逻辑推理能力。重点同底数幂的乘法法则及法则的正确应用。难点同底数幂的乘法法则的推导。教学流程一、复习与回顾回忆乘方、幂等概念。二、创设情境,引出课题,探索新知师:看来同学们对以前所学的知识还有印象。哎,有一件事情虽然过去两年多了,但是我相信大家一定印象深刻那就是2008年北京奥运会。你们还记得奥运场馆的标志性建筑是什么吗?对,鸟巢和水立方!非常壮观,被列入北京十大建筑,同时也是世界上著名的节能环保

2、建筑。你们认为他们最漂亮的是什么时候呢?(出示鸟巢和水立方的夜景图)到了晚上他们就更漂亮了,是因为什么?(灯光)可能大家有所不知,这里所需要的灯光大部分都不是来自发电厂,而是来自太阳能。(出示: 中国奥委会为了把2008年北京奥运会办成一个环保的奥运会,很多建筑都做了节能的设计,据统计:奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量。那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?)【利用鸟巢和水立方夜景图及例1,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面不失时机加深学生的爱国主义教育和环保意识】师:你们能列式吗?

3、(学生讨论得出108105)师:108、105我们称之为什么?(幂)师:我们再来观察底数有什么特点?生1:都是10 生2;是一样的师:像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法。(揭示课题)(一) 合作学习、探索新知1、 探索 108105 等于多少?(鼓励学生大胆猜想?)学生可能会出现以下几种情况: 100131040 10040 1013【猜想产生疑问,激发兴趣,为学生推导公式作好情感铺垫。】师:那到底谁得猜想是正确呢?小组合作讨论(师提示:根据幂的意义)生回答师板演:108 105 =(10 1010)(10 1010)(8个10) (5个10)=10101013个10

4、=10 13即:108 105=108+5【师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程。】2、出示问题:(学生口答,课件显示过程)a6 a9 =(a aa)(a aa)6个a 9个a=a aa15个a a15即:a6 a9=a6+93 、观察以上两个式子,你有什么发现?( )师:这是两个特殊的式子,他们的指数分别是8,5;6,9。同底的两数任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗?am an 怎么计算?【a6 a9和 am an 的推导过程由于108 105 打好

5、了坚实的基础而且推导过程也重复,所以我用填空的形式简化公式的推导过程,即避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程。】板书:am an = am+n (m、n都是正整数)师补充解释m、n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述。板书:同底数幂相乘底数不变,指数相加。【多名学生参与到全班学生参与,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而发展全体学生数学语言和提高学生的表达能力。】 出示:1、计算下列各式,结果用幂的形式表示:(1)(-9)2 (-9)5 (2)xm x3m+1 (3)(x+y)3 (

6、x+y) 教学(1)指名回答,师板演完整步骤(2)(3)学生独立完成,要求书写完整的解答步骤。师概括底数a可以是任意有理数,也可以是单项式或多项式。出示:2、计算下列各式,结果用幂的形式表示:(1)a a3 a6 (2)(-m)3 (-m)5 (-m) 教学(1)学生齐答,师板演完整步骤(2)学生独立完成后师提问:你对法则有什么新的认识吗?出示:3、计算下列各式,结果用幂的形式表示:(1) -m2 (-m)6 (2)a (-a)2 (-a)3教学 :小组合作,讨论完成。 问:此类题有何特征?解题时应注意哪些问题?第1题(1)的教学活动目的让学生掌握解题的书写步骤,(2)(3)让学生独立完成进一

7、步巩固解题的书写步骤,第3题小组合作解题。本例的教学活动既有教师的引导,学生独立思考又有学生的合作交流,从而优化学生的思维体现了思维的合理化、严格化、程序化,特别是小组合作,能使学生在同伴交流过程中也培养了团体合作意识。师问: a8+a8等于多少?生可能会快速回答:等于a16师追问 a8a8等于多少?生:等于a16生在回答a16时立即发现了问题师再追问:那么说a8+a8= a8a8?生思考片刻:a8+a8=2a8该教学活动让学生产生思想冲突,并又教师的追问使他们自己产生疑问,再让学生经过“比较”解决冲突,也避免了以后出现同类项与同底数幂相乘产生混淆。三、巩固新知 课件出示下面计算对吗?如果不对

8、,应怎样改正?( )( )( )师:思考一至二分钟举手回答,可挑选自己喜欢的题目回答。给学生充足的思维空间,养成思考习惯,让学生自主挑选回答主要是让后进生也能在课堂上体验成功,有成就感;且该教学活动亦能培养学生仔细观察问题的习惯。四、活用法则课件出示:已知 am = 3 , an =5 , 求 am+n 的值。(1)让学生在新知识的基础上结合旧知识解题。培养学生综合分析。同时也进一步巩固了同底数幂乘法公式的理解和应用。五、归纳小结1、同桌之间用今天学到的知识,每人出一个最好的题让同伴解答。看谁出题最好、又看谁解答最棒!2、叙述本节课的收获。另一方式的归纳总结法、既能让学生自己总结应用课堂所学的

9、知识,也能让学生体验成功的喜悦。教学反思:本课我采用探究合作教学法进行教学,充分发挥了学生的主体作用,积极为学生创设一个和谐宽松的情境,学生在自主的空间里自由的奔放地想象思维和学习取得交好的效果。在这次教学的导入环节,我利用多媒体为学生创设美观热点生活情境,充分调动了学生的兴趣和积极性;在同底数幂乘法公式推导过程中学生思维经历了猜测、质疑。推理论证的科学发现过程,也渗透了转化和从特殊到一般的数学辩论思想,充分体现了自主探究的学习方式;而在巩固深化环节上精心设计开放式题目。通过学生独立思考,小组合作等手段,让学生个个动手、人人参与,充分调动学生学习数学的积极性。同时也使各层次的学生有不同的收获。总之,学生的思维空间需要我们去开拓,学生身上闪耀出的智慧火花也另我倍受鼓舞。4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服