ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:57.50KB ,
资源ID:5561839      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5561839.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(集合间的基本关系.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

集合间的基本关系.doc

1、 1.1.2 集合间的基本关系 一、教学目标: 1、知识与技能 (1)理解集合之间包含和相等的含义; (2)能识别给定集合的子集; (3)能使用Venn图表达集合之间的包含关系。 2、过程与方法 (1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合的从属关系,探究集合之间的包含与相等关系; (2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力。 3、情感、态度、价值观 (1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义。 (2)探索利用直观图示(Venn图)理

2、解抽象概念,体会数形结合的思想。 二、重点、难点: 重点:(1)帮助学生由具体到抽象地认识集合与集合之间的关系——子集; (2)如何确定集合之间的关系。 难点:集合关系与其特征性质之间的关系。 三、教学过程: 1、新课引入 问题1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢? 2、概念的形成 问题1的探究: 具体实例1:看下面各组中两个集合之间有什么关系 (1)A={1,2,3}, B={1,2,3,4,5} (2)A={菱形}, B={平行四边形} (3)A={x|x>2}, B={x|x>

3、1} (学生分组讨论) 学生甲:我发现在第一组的两个集合中1是集合A中的元素,也即1∈A,同时1也是集合B中的元素;同理2,3也是这样,这就是说集合A中的每一个元素都是B中的元素。 学生乙:除了甲说的外,我还看到集合B中的元素4、5就不在A中,也就是说集合B好像比A大。 学生丙:马上提出疑问:难道说集合之间也存在大小关系吗? 带着大家的疑问我们继续来观察(2)、(3)两组中两个集合之间又有什么样的关系呢? 学生丁:在第2组中我们都知道所有的菱形都是平行四边形,但所有的平行四边形并不都是菱形。我不敢说B比A大,但起码B中的元素比A中的多,且集合A中的每一个元素都是B中的元素。 师:

4、大家分析的都很好,能抓住问题的核心,从元素看集合。那么在第3组中出现了两个不等式,我们可以借助于数轴进而看到它们的关系(黑板画数轴表示集合)。 具有这样关系的两个集合如何准确的用数学语言表述呢? (1)子集的定义: 文字语言:一般地,对于两个集合A,B,如果集合A中的任何一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。 符号语言:或。 B A 图形语言: 这种图称为Venn图.

5、 练习1、用适当的符号填空: 0 {0}, {正方形} {矩形},三角形 {等边三角形} {梯形} {平行四边形},{x|-12},B={x|x<0或x>1} (2)、A={x|-1

6、中,也就是说至少有一个元素只属于B而不属于A,对于(2)通过对B有求解,也不难发现,,但B中的所有元素也都在A中,也就是说,或者可以说A和B中的元素完全相同。 师:很好,通过对实例1的探讨,大家能客观细致地分析得到两个集合之间的关系了。 (2)相等关系:如果集合,且,则A=B。 (3)真子集的定义:如果集合,但存在元素x ∈B,且xA,我们称集合A是集合B的真子集,记作A B (或B A). 问题3、集合中会不会没有任何元素呢? 具体实例3、考察下列集合. 并指出集合中的元素是什么? (1)A = {(x,y) | x + y =2}。 (2)B

7、 {x | x2 + 1 = 0,x ∈R}。 生:通过观察分析后回答,(1)中的元素是一条直线上的点,而(2)中元素x是一个方程的解,但这个方程无解。 师:非常好! (4)空集的定义: 我们把不含任何元素的集合称为空集,记作。 规定:空集是任何集合的子集;空集是任何非空集合的真子集。 4、能力提升 (5)子集的性质: 一般结论: ①. ②若,,则. ③A = B ,且. 5、举例应用: 例1、写出集合A={1,2,3}的所有子集,并指出有几个真子集是哪些? 例2、集合A与集合B之间是什么关系? A={x|x=4k+2,k∈Z} B={x|x=2k,k∈Z } 6、课堂练习: 课本第7页练习1,2,3 (1)写出集合{a、b}的所有子集;并指出其子集、真子集的个数。 (2)写出集合{a、b、c}的所有子集;并指出其子集、真子集的个数。 (3)写出集合{a、b、c、d}的所有子集;并指出其子集、真子集的个数。 归纳猜想:对于一个含有n个元素的集合,其子集的个数与元素个数之间有什么关系? 7、课堂小结: (1)知识点:①子集、真子集、相等关系的概念,空集的概念。 ②子集的相关性质。 (2)方法:数形结合(如数轴、Venn图)解决有关集合问题。 8、课后作业:课本第12页习题1、1A组 5,B组 2. 4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服