ImageVerifierCode 换一换
格式:DOC , 页数:34 ,大小:617.50KB ,
资源ID:555092      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/555092.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Fis****915】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【Fis****915】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(毕业论文之英译汉.doc)为本站上传会员【Fis****915】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

毕业论文之英译汉.doc

1、International Journal of Rock Mechanics and Mining SciencesAnalysis of geo-structural defects in flexural toppling failure Abbas Majdi and Mehdi AminiAbstractThe in-situ rock structural weaknesses, referred to herein as geo-structural defects, such as naturally induced micro-cracks, are extremely re

2、sponsive to tensile stresses. Flexural toppling failure occurs by tensile stress caused by the moment due to the weight of the inclined superimposed cantilever-like rock columns. Hence, geo-structural defects that may naturally exist in rock columns are modeled by a series of cracks in maximum tensi

3、le stress plane. The magnitude and location of the maximum tensile stress in rock columns with potential flexural toppling failure are determined. Then, the minimum factor of safety for rock columns are computed by means of principles of solid and fracture mechanics, independently. Next, a new equat

4、ion is proposed to determine the length of critical crack in such rock columns. It has been shown that if the length of natural crack is smaller than the length of critical crack, then the result based on solid mechanics approach is more appropriate; otherwise, the result obtained based on the princ

5、iples of fracture mechanics is more acceptable. Subsequently, for stabilization of the prescribed rock slopes, some new analytical relationships are suggested for determination the length and diameter of the required fully grouted rock bolts. Finally, for quick design of rock slopes against flexural

6、 toppling failure, a graphical approach along with some design curves are presented by which an admissible inclination of such rock slopes and or length of all required fully grouted rock bolts are determined. In addition, a case study has been used for practical verification of the proposed approac

7、hes.Keywords Geo-structural defects, In-situ rock structural weaknesses, Critical crack length1. IntroductionRock masses are natural materials formed in the course of millions of years. Since during their formation and afterwards, they have been subjected to high variable pressures both vertically a

8、nd horizontally, usually, they are not continuous, and contain numerous cracks and fractures. The exerted pressures, sometimes, produce joint sets. Since these pressures sometimes may not be sufficiently high to create separate joint sets in rock masses, they can produce micro joints and micro-crack

9、s. However, the results cannot be considered as independent joint sets. Although the effects of these micro-cracks are not that pronounced compared with large size joint sets, yet they may cause a drastic change of in-situ geomechanical properties of rock masses. Also, in many instances, due to diss

10、olution of in-situ rock masses, minute bubble-like cavities, etc., are produced, which cause a severe reduction of in-situ tensile strength. Therefore, one should not replace this in-situ strength by that obtained in the laboratory. On the other hand, measuring the in-situ rock tensile strength due

11、to the interaction of complex parameters is impractical. Hence, an appropriate approach for estimation of the tensile strength should be sought. In this paper, by means of principles of solid and fracture mechanics, a new approach for determination of the effect of geo-structural defects on flexural

12、 toppling failure is proposed. 2. A brief review of previous workConsiderable research has been performed in the field of flexural toppling failure 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. The first applied research was due to Goodman and Bray 2. These researchers proposed the indispensable condition for f

13、lexural toppling failure. In 1987, Aydan and Kawamoto, by employing the equations of limit equilibrium and the boundary conditions, proposed an equation for determination of inter-column forces of rock masses in open excavations and underground openings environment 5. They verified the method by car

14、rying out laboratory base friction modeling. On the basis of these experiments, the total failure plane of flexural toppling is normal to the discontinuities. Hence, the angle between the total failure plane and the normal to the discontinuities is zero. It is also seen that they assumed that if the

15、 rock layers are stable under a given load condition in the upper part, the inter-column forces will be zero. Based on the aforementioned assumptions the factor of safety of all rock columns should be computed and consequently the extension of total failure plane can be determined. Adhikary et al.,

16、by carrying centrifuge modeling, made some changes to Aydan and Kawamotos equation for flexural toppling failure in open excavations 7, 8 and 9. On the basis of these experiments, the total failure plane of flexural toppling failure is around 10 above normal to the discontinuities. In 2008, Majdi an

17、d Amini 10 and Amini et al. 11, using the principles of compatibility and the equations of equilibrium along with the governing equations to elastic deformation for the beams, derived equations for determination inter-column forces in rock masses with potential of flexural toppling failure. The afor

18、ementioned researchers proved that the minimum factor of safety against toppling failure is equal to the factor of safety of a cantile: = (1) (2)where is the calculated lengths of rock columns used for computation of inter columns resultant force, C is a dimensionless geometrical parameter, H is the

19、 height of the slope, is the dip angle of the rock mass governing discontinuities, is the angle between total failure plane and the line normal to governing discontinuities, is the slope angle from slope face clockwise to horizontal, is the unit weight of intact rock, and is the slope angle from slo

20、pe face counterclockwise to horizon and equal to 180.Hence, the factor of safety of rock columns against flexural toppling failure is computed by means of the following equation 10 and 11: (3)where t is the thickness of rock columns,t is the uniaxial tensile strength of rock columns, and FS is the f

21、actor of safety. To verify the method, they used the existing modeling results (base friction experiments of 6 and centrifuge modeling of 7).It is important to bear in mind that in all the above mentioned equations it was presumed that the rock columns are homogenous, isotropic, and continuous; henc

22、e the effect of in-situ rock structural weaknesses on the computed factor of safety was ignored. Therefore, the calculated factor of safety based on the aforementioned method is overestimated. Jennings 12 defined a parameter as “joint persistence” for investigation of the influence of geo-structural

23、 weaknesses in plane failure of rock slopes which is defined as follows: (4)where k is the joint persistence, an is the half-length of the nth joint, bn is the half-length of the nth rock bridge, N is the number of cracks, a is half of the average length of a presumed crack, and b is half of the ave

24、rage length of a presumed rock bridge.Determination of the exact value of the joint persistence (or “a” and “b” parameters), like many other in-situ geological factors such as dip and dip direction of discontinuities, spacing, etc., may not be possible. Therefore, these parameters must be determined

25、 with statistical approach. Therefore, the parameters a and b can be measured on the site by joint mapping of the rock masses (Fig. 1). The mean values of the statistical results can be used to compute the joint persistence. Fig. 1. Crack and rock bridge in a rock column with potential of flexural t

26、oppling failure.View Within ArticleIn this paper, the parameters a, b, and k are used for further analyses of geo-structural defects in flexural toppling failure.3. Effect of geo-structural defects on flexural toppling failure3.1. Critical section of the flexural toppling failureAs mentioned earlier

27、, Majdi and Amini 10 and Amini et al. 11 have proved that the accurate factor of safety is equal to that calculated for a series of inclined rock columns, which, by analogy, is equivalent to the superimposed inclined cantilever beams as shown in Fig. 3. According to the equations of limit equilibriu

28、m, the moment M and the shearing force V existing in various cross-sectional areas in the beams can be calculated as follows: (5) ( 6)Since the superimposed inclined rock columns are subjected to uniformly distributed loads caused by their own weight, hence, the maximum shearing force and moment exi

29、st at the very fixed end, that is, at x=: (7) (8)If the magnitude of from Eq. (1) is substituted into Eqs. (7) and (8), then the magnitudes of shearing force and the maximum moment of equivalent beam for rock slopes are computed as follows: (9) (10)where C is a dimensionless geometrical parameter th

30、at is related to the inclinations of the rock slope, the total failure plane and the dip of the rock discontinuities that exist in rock masses, and can be determined by means of curves shown in Fig. Mmax and Vmax will produce the normal (tensile and compressive) and the shear stresses in critical cr

31、oss-sectional area, respectively. However, the combined effect of them will cause rock columns to fail. It is well understood that the rocks are very susceptible to tensile stresses, and the effect of maximum shearing force is also negligible compared with the effect of tensile stress. Thus, for the

32、 purpose of the ultimate stability, structural defects reduce the cross-sectional area of load bearing capacity of the rock columns and, consequently, increase the stress concentration in neighboring solid areas. Thus, the in-situ tensile strength of the rock columns, the shearing effect might be ne

33、glected and only the tensile stress caused due to maximum bending stress could be used.3.2. Analysis of geo-structural defectsDetermination of the quantitative effect of geo-structural defects in rock masses can be investigated on the basis of the following two approaches.3.2.1. Solid mechanics appr

34、oachIn this method, which is, indeed, an old approach, the loads from the weak areas are removed and likewise will be transferred to the neighboring solid areas. Therefore, the solid areas of the rock columns, due to overloading and high stress concentration, will eventually encounter with the prema

35、ture failure. In this paper, for analysis of the geo-structural defects in flexural toppling failure, a set of cracks in critical cross-sectional area has been modeled as shown in Fig. 5. By employing Eq. (9) and assuming that the loads from weak areas are transferred to the solid areas with higher

36、load bearing capacity (Fig. 6), the maximum stresses could be computed by the following equation (see Appendix A for more details): (11)Hence, with regard to Eq. (11), for determination of the factor of safety against flexural toppling failure in open excavations and underground openings including g

37、eo-structural defects the following equation is suggested: (12)From Eq. (12) it can be inferred that the factor of safety against flexural toppling failure obtained on the basis of principles of solid mechanics is irrelevant to the length of geo-structural defects or the crack length, directly. Howe

38、ver, it is related to the dimensionless parameter “joint persistence”, k, as it was defined earlier in this paper. Fig. 2 represents the effect of parameter k on the critical height of the rock slope. This figure also shows the limiting equilibrium of the rock mass (Fs=1) with a potential of flexura

39、l toppling failureFig. 2. Determination of the critical height of rock slopes with a potential of flexural toppling failure on the basis of principles of solid mechanics.View Within Article3.2.2. Fracture mechanics approachGriffith in 1924 13, by performing comprehensive laboratory tests on the glas

40、ses, concluded that fracture of brittle materials is due to high stress concentrations produced on the crack tips which causes the cracks to extend (Fig. 3). Williams in 1952 and 1957 and Irwin in 1957 had proposed some relations by which the stress around the single ended crack tips subjected to te

41、nsile loading at infinite is determined 14, 15 and 16. They introduced a new factor in their equations called the “stress intensity factor” which indicates the stress condition at the crack tips. Therefore if this factor could be determined quantitatively in laboratorial, then, the factor of safety

42、corresponding to the failure criterion based on principles of fracture mechanics might be computed.Fig. 3. Stress concentration at the tip of a single ended crack under tensile loadingView Within ArticleSimilarly, the geo-structural defects exist in rock columns with a potential of flexural toppling

43、 failure could be modeled. As it was mentioned earlier in this paper, cracks could be modeled in a conservative approach such that the location of maximum tensile stress at presumed failure plane to be considered as the cracks locations (Fig. 3). If the existing geo-structural defects in a rock mass

44、, are modeled with a series cracks in the total failure plane, then by means of principles of fracture mechanics, an equation for determination of the factor of safety against flexural toppling failure could be proposed as follows: (13)where KIC is the critical stress intensity factor. Eq. (13) clar

45、ifies that the factor of safety against flexural toppling failure derived based on the method of fracture mechanics is directly related to both the “joint persistence” and the “length of cracks”. As such the length of cracks existing in the rock columns plays important roles in stress analysis. Fig.

46、 10 shows the influence of the crack length on the critical height of rock slopes. This figure represents the limiting equilibrium of the rock mass with the potential of flexural toppling failure. As it can be seen, an increase of the crack length causes a decrease in the critical height of the rock

47、 slopes. In contrast to the principles of solid mechanics, Eq. (13) or Fig. 4 indicates either the onset of failure of the rock columns or the inception of fracture development.Fig. 4. Determination of the critical height of rock slopes with a potential of flexural toppling failure on the basis of p

48、rinciple of fracture mechanics.View Within Article4. Comparison of the results of the two approachesThe curves shown in Fig. represent Eqs. (12) and (13), respectively. The figures reflect the quantitative effect of the geo-structural defects on flexural toppling failure on the basis of principles of solid mechanics and fra

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服